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Abstract: The aim in this study was to develop an artificial neural network (ANN) to forecast the 
mole fractions of the CO2- C2H6 azeotropic separation during the natural gas treatment process. 
The ANN was designed with experimental data (150 data pairs) obtained in DWSIM from a pre-
viously process described in bibliography. The sample used to train the ANN is structured by three 
inputs: pressure, temperature and solvent / feed ratio, and six outputs: the mole fractions of distilled 
CO2 and residual ethane in the extractive column, the mole fractions of distilled ethane and 
residual propane in the solvent recovery column and the mole fractions of distilled ethane and 
residual ethane in the concentrator column. The neural network was designed using 80 hidden 
neurons in its architecture and the Bayesian regularization algorithm for training (MSE=0.0036 
and R=0.9554). The ANN’s prediction was validated using statistical parameters (ANOVA and 
Kruskal Wallis) which indicate that the designed ANN is statistically valid and can be used to 
predict the mole fractions of the CO2- C2H6 azeotropic separation and can be used in the 
improvement of the processes of sweetening of natural gas after its demethanization. 
Keywords: Azeotrope; Extractive Distillation; Natural Gas; DWSIM; Carbon Dioxide; 
MATLAB; Artificial Neural Networks (ANN) 
1. Introduction 
For decades, oil has been the basis of the energy structure worldwide; due to its high level of 
consumption (90% only in transportation) and extensive development (production of derivative 
products), it has become the main engine of both developed and developing countries [1]. 
However, despite the prevalence of oil as the main energy source, natural gas (NG) is currently 
transforming and changing this trend. NG is known as a mixture of gaseous hydrocarbons that is 
frequently found in fossil deposits in various forms, such as: non-associated (alone), dissolved or 
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associated (accompany-ing oil) and in coal deposits [2], and constitutes the third energy source 
worldwide after oil and coal. 
 
The composition of NG can change according to the type of reservoir, depth, loca-tion and 
geological conditions. However, for the gas to be used commercially or indus-trially, it must 
undergo a conditioning pretreatment, which is mainly based on the re-moval of water content and 
acid gases characteristics of its composition [3]. NG treat-ment generally involves four stages: 
sweetening, dehydration, oil removal and lique-faction [4].  
 
There are several methods for NG sweetening: chemical absorption with amines, physical 
absorption, membrane permeation, and low-temperature distillation [5]. The low-temperature 
extractive distillation process (conventional process) separates CO2 from hydrocarbons through a 
sequence of two distillation columns and is one of the most widely used because it minimizes 
operational and safety problems [6]. However, despite its widespread industrial use and its major 
benefits, its high energy demand commonly accounts for more than 50% of plant operating costs 
[6,7].  
 
In this regard, several studies to optimize the CO2-C2H6 separation process stand out. For 
example, Torres et al., [8] analyzed by simulation the effect of different fractions of liquefied 
hydrocarbons as a drag agent, the thermodynamic efficiency and the gen-eration of greenhouse 
gases in conventional process to remove CO2.This alternative presented better overall 
performances compared to the conventional chemical absorp-tion system. Lastari et al. [9] 
analyzed the effect of the solvent/feed composition and the location of the feed trays on the total 
energy requirement, establishing that the optimum solvent/feed ratio is in the range of 1.053 - 
1.064 for the treatment of the mixture (CO2- C2H6) and that the stage where the feed and solvent 
enter has significant effects on the total energy demand of the column.  
 
On the other hand, Tavan et al. [10] established through simulation in ASPEN HYSYS that there 
is a significant reduction in operating costs (total energy demand) using reactive absorption (RA) 
configurations making use of diethylamine as solvent, compared to conventional extractive 
processes. They then proposed, by means of rig-orous simulation methods, an extractive dividing-
wall column (EDWC) taking into ac-count environmental (CO2 emission) and energy parameters 
and confirmed that this technology reduces the total energy demand by approximately 51.6% [11]. 
In addition, they proposed the feed-splitting technique, to separate the feed prior to entering the 
heat exchanger, in order to maintain a fraction of the feed at its original temperature. By means of 
this technique, the energy reduction in contrast to the conventional process is 56% [12]. With the 
aforementioned, EDWC is one of the most efficient and operative techniques, which allows an 
approximate saving of 17% in total annual costs [7]. It is important to mention hybrid technologies 
to minimize energy costs in distillation processes, this technology reports the advantages of a 
profitable process units [13–15]. 
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Ebrahimzadeh et al., [5] suggest a three-column extractive distillation configuration for CO2-
C2H6 separation (ASPEN PLUS simulation). The process described leads to a 10% reduction in 
annual cost without compromising the desired purification, and also significantly minimizes the 
energy required for liquefaction. 
 
1.1. ANN as a prediction tool in chemical processes 
ANNs are able of solving linear and nonlinear multivariate regression problems, hence permitting 
the study of the relationship between the input and output variables of the method employing a 
constrained number of test runs. In addition, ANNs can be effortlessly created by applying an 
appropriate plan of tests [16,17].  
  
ANN models have been applied in several chemical processes, such as nonlinear multi-variable 
predictive controllers for distillation columns, where the controller uses an on-line optimization 
routine, which determines the future control variables that minimize the deviations between the 
predicted control variables and their set points [18]. Zamprogna et al. [19] designed a virtual sensor 
(recurrent ANN) that estimates product compositions, using measurements of secondary 
parameters such as temper-ature and molar flow, in a batch distillation column of intermediate 
vessels. The work showed that the estimated compositions match the actual values. Li et al. [20] 
combined ANNs with genetic algorithms (GA) to model the azeotropic distillation system of 
isopropanol-water mixture with complex mechanisms and optimize the energy.  
 
Liau et al. [21] designed an ANN capable of predicting the quality of the crude oil as a function of 
the input parameters, thus optimizing and maximizing the production rate and the process. The 
developed system provides the optimal operating conditions of the fractionation unit considering 
the operating variables. Fernandez et al. [22] built an identification and control tool for a 
laboratory-scale distillation column based on neural networks using LABVIEW. They 
demonstrated that ANNs are a potential tool for their functionality when interacting with 
instruments, sensors and actuators. 
 
Motlaghi et al. [23] created an ANN model of a crude oil distillation systems (CDU), to forecast 
the unspecified values of the desired product flow and temperature at the specified characteristics 
of the inpud feed, being able to minimizing the model output error and maximizing the required 
oil generation rate with respect to control parameter values (product quality).  
On the other hand, Vafae et al. [24] used a multilayer perceptron (MLP) network as a new and 
effective method to simulate recoveries from 16 oil data sets using as input variables: API degrees, 
viscosity, characterization factor and steam distillation factor, to predict distillation performance. 
This study showed that MLP is more effective than the EOS equation of state method and Holland 
- Welch correlation.  
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In addition, Ochoa et al. [25] suggest a methodology to optimize heat-integrated in CDU, which 
considers an ANN model to represent the distillation column. The ANN is incorporated into the 
process in an optimization system to efficiently decide the working conditions that progress the 
overall economy of the process.  
Leng et al. [26] used a back propagation ANN to build a model between the phys-ical properties 
and Terahertz spectra -THz- (technique used to realize the identification and determination of the 
principal gas components distilled from oil shale) with the input of THz-FDS over the range from 
0.2 to 1.5 THz to quantitatively characterize the component and total pressure of the distillation 
process. The results indicate that the THz (Terahertz) technique combined with ANN is an 
effective tool for gas detection and can be used in industrial unconventional gas plants.  
Osuolale and Zhang [27] presented a neural network-based strategy to model and optimize energy 
efficiency in distillation columns. They used ASPEN HYSYS for dis-tillation system simulation 
and ANN models to obtain optimal operating conditions that can maximize energy efficiency, 
quality, and product yield. The application of the proposed methodology improved 32.4% of 
exergetic efficiency.  
 
There are several investigations that employ neural network models applied to chemical processes, 
however, the alternative processes of extractive distillation and separation of azeotropes have not 
been exploited within the ANN area. The advantage over simulation is that ANN is able to learn 
directly from a process and give shorter response times, allowing systems to be modeled in a more 
complex and realistic manner [28,29].  Other advantages are its simplicity, versatility, accurate 
approximation of complex nonlinear processes and "black box" approach; it does not require 
detailed knowledge of the system being analyzed[30,31].  
 
In the present work we propose to generate an ANN, from Chemical Process Simulator open source 
(DWSIM), of the process proposed in [5] to predict the mole fractions of the main components 
obtained in the extractive distillation, both in the distillate and in the residues of each extractive 
column, as a function of the operating conditions of the process. In the future, ANN can be 
incorporated into industrial plants for prediction, optimization, and continuous improvement of 
processes. 
2. Materials and Methods 
2.1. Process Description 
Figure 1 illustrates the alternative extractive distillation process for the separation of azeotrope 
CO2-C2H6, adapted from [5]. The process is composed of three columns: C1 - CO2 extractive 
column, C2 - solvent recovery column and C3 - concentrator column.  
 
Column (C1) receives a free methane stream from a natural gas demethanizer (not considered in 
the process) containing CO2, C2H6 and hydrocarbons, which is mixed with the recirculation from 
the distillate of column (C3) containing CO2 and C2H6. In addition, the bottom product 
(hydrocarbons) from the column (C2) also enters in column (C1). 
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During the process, in C1 the head product is not entirely CO2 and the bottom product contains 
10% CO2 together with C2H6 and heavy hydrocarbons.. In C2, the high purity solvent from the 
bottom stream of the first column is recovered at the base of the second column and the distillate 
from this column is fed to the third column (C3), which produces C2H6 (bottom) and azeotropic 
mixture (distillate). 
 
Table 1 summarizes the composition of the feed entering the extractive column C1. While Tables 
2-4 detail the operating conditions of the extractive, solvent recovery and concentrator columns, 
respectively. Unlike the conventional process, the distillate from the extractive column remains in 
a liquid state and does not require a liquefaction pro-cess, thus minimizing the total energy 
demand. The heavy hydrocarbons leaving the solvent recovery column as a bottom product are 
divided into NGL product and solvent, which is recycled back to the extractive column 
(recirculation 1). In C3 the bottom product is C2H6 with high purity (99.7 mole %), while distillate 
is CO2-C2H6 mixture (1.35 kmol/s, 46.2 mole % CO2). After heat recovery, it is recycled to C1 
(recirculation 2 – Feed Stage = 5). 
 
The thermal power source used for all heat exchangers is saturated steam at 6.9x105 Pa. In 
addition, as opposed to the conventional design using a total condenser, partial condensers are used 
in the solvent recovery column and concentrator. 
Table 1. Feed Conditions to C1 

Parameter Quantity Unit 
Pressure 2.43e6 Pa (abs) 

Temperature 320.15 K 
Feed base (molar flow) 4 kmol/s 

Initial composition of CO2* 0.3225 -  
Initial composition of C2H6* 0.4623 - 

Initial composition of 
propane C3 * 

0.0753 - 

Initial composition of 
isobutane i-C4 * 

0.0753 - 

Initial composition of butane 
n-C4 * 

0.0323 - 

Initial composition of 
isopentane i-C5 * 

0.0215 - 

Initial composition of 
pentane n-C5 * 

0.0108 - 

Source: Ebrahimzadeh et al., [5] 
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Figure 1. Simulation of the alternative distillation system to separate CO2- C2H6 azeotropes in 

DWSIM 
  

Table 2. Extractive column operating conditions 
Parameter Quantity Unit 
Pressure 2.3e6 Pa (abs) 

# Column stages* 39 - 
# Feed stage* 36 - 

# Solvent inlet stage*  5 - 
Solvent/feed ratio 0.6 - 
Reflux ratio (RR) 4.61 - 

Solvent molar flow (recycle 
stream from C2) 

2.4 kmol/s 

Feed molar flow 4 kmol/s 
Molar flow of recycle stream 

from C3 
1.35 kmol/s 

Condenser duty 87.86 MW 
Reboiler duty 15.12 MW 

Source: Ebrahimzadeh et al., [5] 
 
Table 3. Solvent recovery column operating conditions 

Parameter Quantity Unit 
Pressure 2.3e6 Pa (abs) 

# Column stages* 37 - 
# Feed stage* 15 - 

Reflux ratio (RR) 1.08 - 
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Condenser duty 32.1 MW 
Reboiler duty 92.6 MW 

* Numbered from the top of the distillation tower. 
Source: Ebrahimzadeh et al., [5] 

Table 4. Concentrator column operating conditions 

Parameter Quantity Unit 
Pressure 2.3e6 Pa (abs) 

# Column stages* 43 - 
# Feed stage* 10 - 

Reflux ratio (RR) 2.9 - 
Condenser duty 37.1 MW 

Reboiler duty 20.9 MW 
Source: Ebrahimzadeh et al., [5] 

2.2. Metodology 
Fig. 5 details the methodological procedure for the development of the ANN. As a first point, the 
simulation and validation of the process detailed in Fig. 1 is carried out based on the operating 
conditions of Tables 1-5. Subsequently, the ANN is designed and validated considering the inputs 
and outputs described in Figs. 3-5 and the constraints defined by the simulation. Finally, the 
functionality and predictive capacity of the ANN is evaluated through a graphic and statistical 
analysis. 
 

 
Figure 2. Methodological scheme of the designed ANN 

 
2.3. DWSIM simulation 
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DWSIM (open-source chemical process simulator) is available for Windows, Linux, Android, 
macOS, and iOS and allows engineers to model process plants by using rig-orous thermodynamic 
and unit operations [32].  
 
The distillation towers used for the simulation in Fig. 1 correspond to the "Chem-Sep Column" 
model. All flow streams operate with the Peng-Robinson (PR) properties package, while for the 
distillation towers the EOS / Predictive PR 78 thermodynamic models are adapted, which is one 
of the most widely used packages in hydrocarbon modeling and in principle are able to estimate 
the phase equilibrium and other ther-modynamic properties of a wide assortment of frameworks 
[33–35]. The conditions established in Tables 2-4 correspond to the operating conditions under 
which the pro-cess simulation was carried out. It is important to note that the ChempSep columns 
require the specification of only two operating parameters in addition to the pressure value.  
 
The mathematical method, we used to find the convergence of the simulation process was 
Newton's Method for which a maximum of 100 iterations was established. 
2.4. Design and training of the ANN 
The ANN design (Figure 3) is based on three input parameters: pressure (C1, C2 and C3), 
temperature (inlet temperature to column C1) and solvent/feed ratio to column C1.These input 
variables were chosen because of the importance they represent in the quality of the final products 
and in optimization processes [9,10,36–38]. While six output parameters were considered: mole 
fractions of CO2 distillate and C2H6 bottom in C1 , C2H6 distillate and C3 bottom in (C2), and 
C2H6 both distillate and bottom  in (C3).  

 
Figure 3. Schematic of the designed ANN 

Based on the guidelines of Chen et al., [39], for network learning and training 70% of the total 
data pairs (90 data sets) were used, while 30% (40 data sets) were utilized to perform a testing to 
assess its level of learning. Figures 4 and 5 describe the inputs and outputs used in the ANN 
designed (Appendix A). 
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Figure 4. Inputs: (a) Columns pressure (Pa); (b) Columns temperature (K); (c) Solvent/feed ratio 
The ANN training adjusts the weights of the connections between neurons for the ANN to make 
adequate predictions regarding the targeted output data. Validation measures the ANN's prediction 
errors to assess its performance. Testing process eval-uates the prediction of ANN using pairs of 
data that were not used in the training process [40].  
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Figure 5. Outputs: (a) Mole fraction of CO2 distillate in C1; (b) Mole fraction of C2H6 bottom in 

C1; (c) Mole fraction of C2H6 distillate in C2; (d) Mole fraction of C3 bottom in C2; (e) Mole 
fraction of C2H6 distillate in C3; (F) Mole fraction of C2H6 bottom in C3. 

The specific bibliography in ANN, suggests at least 50 points to predict quantities with regression 
algorithms [41–43]. In this respect, 130 pairs of data (with 3 inputs and 6 outputs) was generated, 
coming from the random variation of the operating parameters and/or performances selected for 
the study. Table 5 shows the range of variation of the inputs, that were chosen based on typical 
and extremes ranges of operation [9,10,36–38] . To ANN validation, we used the following 
performance indicators: mean square error (MSE) and regression coefficient (R) by means of Eq. 
(1) and Eq. (2) and additionally an ANOVA. In addition, the ANN performance was optimized 
through a trial-and-error procedure in order to minimize the MSE and maximize the correlation 
coefficients in the training, validation and testing stages. 

𝑀𝑆𝐸 =  
1

n
𝑦 − 𝑦′                                                                  (1) 

 
 

R =  
𝑛 ∑ (𝑦 𝑦) − [∑ 𝑦′][∑ 𝑦]

[𝑛 ∑ 𝑦 − [∑ 𝑦 ] [𝑛 ∑ 𝑦 − [∑ 𝑦 ]
                            (2) 

Where: n is the number of observations; y are the actual results (simulation out-puts); y ' are the 
predicted targets (ANN outputs). 

Parameter Pressure (Pa) 
C1, C2, C3 

Temperature (K) 
inlet stream to C1 

solvent/feed ratio 
(-) 

regulated in the 
splitter 

*Range 506625 – 3.54e6 2.93.15 – 373.15 0.15 – 0.8 
* Less or greater than the established ranges, the simulation does not run. 
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3. Results and discussion 
This section presents the analysis and discussion of the process simulation and the design, training 
and validation of the ANN. 
3.1. Simulation validation 
The validation of the simulation process in DWSIM was carried out with the comparison of the 
study developed in ASPEN PLUS by Ebrahimzadeh et al. [5]. Table 6 summarizes the percentage 
errors of the mole fractions of interest in their respective distillation columns, which do not exceed 
3%. This percentage of error is justified by the presence of very small traces of other constituents 
in the distillate and the bottom cur-rents, which are considered negligible. 
3.2. ANN topology 
This section describes the design and structuring of the ANN by analyzing the correlation 
coefficient (R) and the mean square error (MSE). 
3.2.1. Selection of ANN Training Algorithm 
For the design and structure of the ANN, three training algorithms were used: Levenberg - 
Marquardt (LM), Bayesian regularization (BR) and scaled conjugate gradi-ent backpropagation 
(SCG). According to specialized bibliography, these algorithms minimize the MSE to a greater 
extent compared to other algorithms available in the literature [44–46]. As in other prediction 
studies [47,48],  the R and MSE values (Table 7) were evaluated for the 3 algorithms studied by 
varying the number of neurons in the hidden layer. 

Table 6. Simulation validation (mole fraction) 

Column Parameter 
Aspen Plus 

[Ebrahimzadeh 
et al., 2016] 

 
DWSIM 

 
Error (%) 

Extractive (C1) CO2 distillate 
C2H6 bottom 

0.956 
0.396 

0.953 
0.406 

0.24 
2.60 

Recovery (C2) C2H6 distillate 
C3 bottom 

0.799 
0.337 

0.801 
0.328 

0.29 
2.59 

Concentrator 
(C3) 

C2H6 distillate 
C2H6 bottom 

0.538 
0.997 

0.554 
0.975 

2.98 
2.25 

 
Table 7. Pearson’s correlation coefficient (R) and root mean square error (RMSE) values for trial 
and error using Levenberg–Marquardt (LM), Bayesian regularization (BR) and scaled conjugate 
gradient backpropagation (SCG) algorithms. 

# hidden 
neurons 

LM BR SCG 
R Global MSE R Global MSE R Global MSE 

20 0.930 0.0074 0.959 0.00187 0.901 0.0129 
40 0.926 0.0076 0.948 0.00181 0.899 0.0095 
60 0.916 0.0065 0.873 5.81 E-07 0.895 0.0072 
80 0.889 0.0096 0.955 0.00160 0.864 0.0078 

100 0.961 0.0068 0.901 1.29 E-11 0.843 0.0033 
After the training process, the results detailed in Table 8 conclude that the most suitable and robust 
model to predict the output targets is BR (MSE min = 1.29E-11, R max = 0.955). The advantage 
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of a BR algorithm is its ability to predict complex relationships and its ability to make decisions 
less biased [44,49,50]. 
 
The computational cost of the BR algorithm is higher, compared to other training algorithms, 
however, it gives rise to good generalizations for difficult, small or noisy data sets. Furthermore, 
it shows a better performance of the predictive capacity in contrast to the Levenberg-Marquardt 
algorithm. The advantage lies in its ability to handle potentially complex relationships, which 
means that it can be used in quantita-tive studies to provide a robust model[44]. 
 
3.2.2. Selection of the number of neurons in the hidden layer 
The determination to the optimal neuron’s number it’s useful to conduct trials in determining 
required local minimum in the error surface, and oscillations in R [2].  
 
According to the analysis in Table 8, when 20 and 80 neurons are used in the hidden layer, the best 
R values are obtained in the testing and global phase. For 20 neurons the R value in testing is 0.846 
and for 80 neurons 0.841, while the MSE values for 20 and 80 neurons are: 0.0018765 and 
0.0001609. The results would indicate that the optimal number of neurons is 80. As seen in Table 
9, the lowest percentage error (< 9 %) occurs when 80 neurons are used in the hidden layer. 
Table 8. R and MSE values for determining the optimal number of neurons in the hidden layer 

# hidden 
neurons 

R 
Training 

R 
Testing 

R 
Global 

MSE 

20 0.979 0.846 0.959 0.00187 
40 0.979 0.802 0.948 0.00181 
60 0.999 0.640 0.873 5.81 E-07 
80 0.978 0.841 0.955 0.000160 

100 0.999 0.625 0.901 1.29 E-11 
Table 9. Percentage error (%E) values for determining the optimal number of neurons in the hidden 
layer 

# hidden 
neurons 

%E CO2  
Distillate C1 

%E C2H6  
Bottoms C1 

%E C2H6  
Distillate C2 

%E C3  
Bottoms C2 

%E C2H6  
Distillate C3 

%E C2H6  
Bottoms C3 

20 66.75 12.15 24.63 16.72 42.95 39.01 
40 54.63 11.26 29.05 39.84 54.56 27.58 
60 77.54 11.29 28.07 41.68 53.86 35.70 
80 8.03 2.54 4.18 8.53 5.90 6.09 

100 62.90 13.27 39.75 26.46 85.03 50.69 
The ANN (perceptron type) was designed with MATLAB NNTOOL version R2018a and from 
the analysis developed, it is defined that the structure of the ANN is composed of: three (3) input 
neurons, a hidden layer with 80 neurons and six (6) output neurons. According to the study 
developed by Abiodum et al.,[51] a hidden layer may be sufficient for prediction in most ANN 
applications. 
 
3.2.3. ANN training and testing 
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Table 10 shows the MSE values for the training phase and testing phase of the ANN. For the 
validation phase there are no results. This is justified because ANNs using the BR algorithm are 
more robust models and can reduce or eliminate the need for validating, taking advantage of these 
data during training. The MSE values for the training and testing phase are: 0.0036 and 0.0222 
respectively, indicating that the ANN performs adequately and that the predictions are made with 
sufficient accuracy. Figure 6 shows the evolution of the mean square error (MSE) during the 
training phase, with a final MSE of 0.0036. The MSE performance function for the training data 
(train) is very close to zero, indicating that the predictive capability of the network is very good. 
 

 
Figure 6. ANN training performance (MSE) 

On the other hand, as seen in Fig.7, there is a moderate dispersion between the outputs and targets 
of the ANN in both the training and test phases. However, the R values for the training and testing 
phase are 0.98 and 0.84 respectively, and the overall R value of 0.96 which indicates that the 
outputs and targets have an acceptable correlation. The closer the R value is to 1, the better the 
performance of the ANN. To validate the ANN, the decision was made that the R value should be 
in the range of 0.95 to 1 and the MSE lower than 0.025. 
 

Table 10. Mean square error of ANN designed 
PHASE MSE 

trainPerfomance (training) 0.0036 
testPerfomance (testing) 0.0222 
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Figure 7. Regression coefficient R for ANN training and testing 

3.3. Model prediction of CO2, C2H6 and C3 mole fractions in the extractive, solvent recovery and 
concentrator columns. 
Figures 8 -9, 10-11 and 12-13 show the overlap between the experimental values (obtained by 
simulation) and the predictions (obtained by ANN) in the extractive column, solvent recovery and 
concentrator, respectively. It can be seen that the com-parisons obtained in the three columns are 
relatively equal. The developed model clearly approximates the observational data (simulation) 
proving in this way that the ANN constitutes a robust and adequate model for the prediction of 
C2H6 and CO2 con-centrations and that it can be applied in CO2- C2H6 azeotrope separation 
process in en-hanced oil recovery processes. 
Based on the analysis of Figures 8-13, the average percent error (%E) of the pre-dictions are: 
5.036% (CO2 in the distillate) and 2.55 % (C2H6 in the residue) in the ex-tractive column (C1); 
4.19% (C2H6 in the distillate) and 4.18% (C3 in the residue) in the solvent recovery column (C2); 
5.91% (C2H6 in the distillate) and 6.09% (C2H6 in the res-idue) in the concentrator column (C3). 
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Figure 8. Comparison of DWSIM (real) and ANN (predicted) results in extractive column 

distillate (CO2 mole fraction) 

 
Figure 9. Comparison of DWSIM (real) and ANN (predicted) results on the extractive column 

bottoms (C2H6 mole fraction) 
3.4. ANN model verification 
The ANN predictive capacity of the concentration of CO2, C2H6 and C3 in the ex-tractive, solvent 
recovery and concentrator column was tested with a set of 20 random input data (P, T and solvent 
/ feed ratio) unknown by the ANN. The results show an overlap between the experimental data 
and the predictions.Tthis indicates that ANN has a good predictive capacity of the mole fractions 
of distillates and residues of the distillation columns (Fig.14). 
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Figure 10. Comparison of DWSIM (real) and ANN (prediction) results in solvent recovery 

column distillate (C2H6 mole fraction) 

 
Figure 11. Comparison of DWSIM (real) and ANN (prediction) results on solvent recovery 

column bottoms (C3 mole fraction) 
 
 In this research we used the functions ANOVA and Kruskal-Wallis [52] using SPSS 22.0, 
to statistically validate the ANN. Table 11 shows the results from ANOVA and, for all cases, P-
values (probability value in statistical significance tests) is greater than 0.05, while Table 12 
summarizes the results of the Kruskall-Wallis test that was performed to validate of outliers of the 
predictions. This test also verifies that the P-value is greater than 0.05 in all cases, indicating that 
there is no statistically significant difference be-tween the means of the observations and the 
predictions. These statistical tests reveal that the ANN constructed is statistically valid for the 
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prediction of the mole fractions of CO2, C2H6 and C3 in columns C1, C2 and C3, with a 
confidence level of 95%. 

 
Figure 12. Comparison of DWSIM (real) and ANN (predicted) results in the concentrator 

column distillate (mole fraction of C2H6) 

 
Figure 13. Comparison of DWSIM (real) and ANN (prediction) results on the concentrator 

column residue (mole fraction of C2H6) 
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Figure 14. Comparison between observations and predictions. Extractive column: a) CO2 mole 
fraction (distillate), b) C2H6 (bottoms); Solvent recovery column: c) C2H6 (distillate), d) C3 

(bot-toms); Concentrator column: e) C2H6 (distillate), f) C2H6 (bottoms). 
Table 11. ANOVA 

Source Sum of squares DOF Mean square F-Value P-value 

Mole fraction of CO2 in the extractive column distillate 
Inter groups 0.0343 1 0.0343 0.78 0.383 
Intra groups 1.6778 38 0.0441   
Total (Corr.) 1.7122 39    

Mole fraction of C2H6 in the extractive column bottoms. 
Inter groups 0.0010 1 0.0010 0.70 0.407 
Intra groups 0.0572 38 0.0015   
Total (Corr.) 0.0583 39    
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Mole fraction of C2H6 in solvent recovery column distillate. 
Inter groups 0.0083 1 0.0083 0.37 0.549 
Intra groups 0.8684 38 0.0228   
Total (Corr.) 0.8767 39    

Mole fraction of C3 in the solvent recovery column bottoms. 
Inter groups 2.38E-05 1 2.38E-05 0.00 0.946 
Intra groups 0.1983 38 5.21E-03   
Total (Corr.) 0.1983 39    

Mole fraction of C2H6 in the concentrator column distillate. 
Inter groups 1.79E-04 1 1.79E-04 0.02 0.897 
Intra groups 0.4027 38 0.0105   
Total (Corr.) 0.4028 39    

Mole fraction of C2H6 in the concentrator column bottoms. 
Inter groups 0.0321 1 0.0321 0.88 0.353 
Intra groups 1.3843 38 0.0364   
Total (Corr.) 1.4164 39    

 
Table 12. Kruskal-Wallis Test 

  Average Range Statistical P-value 

Extractive column    
CO2 Observation (Distillate) 19.05 0.615 0.433 
CO2 Prediction (Distillate) 21.95 

C2H6 Observation (Bottoms) 21.75 0.457 0.499 
C2H6 Prediction (Bottoms) 19.25 
Solvent recovery column    

C2H6 Observation (Bottoms) 19.25 0.457 0.499 
C2H6 Prediction (Bottoms) 21.75 
C3 Observation (Bottoms) 20.85 0.035 0.849 
C3 Prediction (Bottoms) 20.15 
Concentrator column    

C2H6 Observation (Bottoms) 19.95 0.088 0.767 
C2H6 Prediction (Bottoms) 21.05 

C2H6 Observation (Bottoms) 18.75 0.896 0.344 
C2H6 Prediction (Bottoms) 22.25 

 
4. Conclusions 
The mole fractions of an alternative extractive distillation system for the separation of CO2-C2H6 
azeotropes in enhanced oil recovery processes were predicted using an ANN based on the process 
simulation in DWSIM in this study. The ANN developed has 80 hidden neurons and was trained 
with a base of 130 pairs of data with 3 input variables (neurons): pressure (P), temperature (T), 
and solvent/feed ratio. Itis capable of predict-ing 6 output variables (neurons): the mole fraction 
of CO2 in the distillate and C2H6 in the bottoms of the extractive column (C1), the mole fraction 
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of C2H6 in the distillate and C3 in the bottoms of the solvent recovery column (C2), and the mole 
fractions of C2H6 in the distillate and in the bottoms of the concentrator column (C3). 
 
The Bayesian regularization approach was used to train the ANN, which has an MSE of 0.0036 
and a total R of 0.95546. A comparison statistical analysis (ANOVA and Kruskall-Wallis) between 
the data (DWSIM) and the values predicted by the neural network was also used to validate the 
ANN. Statistical tests show that the ANN accu-rately predicts the mole fractions at the outputs 
with a 95% significance level.  
 
According to the findings, the ANN developed in this work can be used as a pre-diction tool for 
improving natural gas sweetening operations. For instance, real oper-ating parameters of the 
described process must be used as input, apply them in situ and verify the predictions at the control 
points (outputs of the ANN). Subsequently, vali-dated in the plant and coupled to the existing 
control process, the energy optimization of the process can be promoted by coupling genetic 
optimization algorithms to the network (hybrid technologies). Optimization studies in a real plant 
will be the subject of future research.  
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