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Abstract 

One of the most productive ecosystems, mangroves have numerous ecological advantages. They 
are the largest carbon absorbers, which means they are vital to preserving the balance of the 
environment. In order to safeguard, conserve, and plan for the replanting of these priceless natural 
resources, reliable thematic maps of mangrove ecosystems and models for mangrove above-
ground biomass (AGB) assessment are essential. In this study, the Google Earth Engine was used 
to create a thorough mangrove ecosystem map and AGB model for the Guneri mangrove forest in 
the Kutch area of Gujarat, India, using Sentinel-1 A satellite images in conjunction. This research 
emphasizes the capacities of Sentinel-1A, SAR images for mangrove characteristics mapping, and 
the model generated is verified using ground truth data collected from the field survey of 127 
sample points. For a more precise model, synthetic data is generated using Generative Adversarial 
Networks (GANs), and the min-max normalization technique is employed to normalize the data. 
Mangrove vegetation is mapped using a pixel-based random forest (RF) classifier, with an average 
overall classification accuracy of 91% and RMSE of 0.506. For AGB model generation the 
machine learning techniques applied to the dataset are Extra Trees Regressor, XGB Regressor, 
Random Forest Regressor, Bagging Regressor, and Decision 

Tree Regressor. Comparatively, it is found that Extra Trees Regressor demonstrated a good 
validation accuracy of 66% with 0.10 RMSE. This work validates the applicability of Random 
Forest (RF) and Extra Trees Regressor algorithms for mapping and estimating AGB for a unique 
landlocked mangrove site of Guneri, and it is observed that the results and robustness of the model 
are highly affected by the usage of a larger dataset and the geographical parameters of the study 
site. 
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Introduction 

One of the most biodiverse habitats along tropical seacoasts and bays is mangrove forests, which 
are made up of salt-tolerant plants with aerial breathing roots that act as sediment traps and support 
a variety of marine creatures [1, 2]. Mangroves serve as barriers to stop hurricanes, tsunamis, and 
ocean waves from destroying the coastal area. Additionally, mangroves act as a natural filter to 
enhance the quality of the water and serve as a habitat for a variety of aquatic life forms. 
Mangroves are substantial carbon sinks in coastal environments, and they perform key functions 
in this regard. Mangrove serves to control coastal floods and erosion and safeguards inland farms, 
ranches, and other settlements that are close to the coast from storms like cyclones and hurricanes 
[3, 4]. Additionally, mangroves directly support the economics and way of life of coastal 
populations by supplying honey, fuel, traditional medicines, and suitable sites for aquaculture and 
fisheries. The fact that the ocean and coastal regions only contain 0.05% of the total plant biomass 
on land, but may nonetheless absorb a similar amount of carbon annually, is an interesting one. 
Studies show that mangroves have better primary yield than other types of forests. Mangroves 
have some of the greatest levels of biomass carbon in the tropics. When compared to other tropical 
forests throughout the world, mangroves can store up to four times more carbon [5]. 
The mapping of the world’s carbon stores is becoming increasingly accurate, and fluxes have 
accelerated significantly in recent years. However, mangroves have mostly been disregarded in 
these evaluations due to their modest area and difficult conditions [6]. It has long been 
acknowledged that most of the regions with a diverse range of mangroves are either inaccessible 
or logistically challenging to research in the field and that this takes a lot of time [7–10]. As dwarf 
mangroves’ aboveground biomass (AGB) may be as little as 8 t/ha to as high as >500 t/ha in the 
Indo-Pacific region’s riverine and fringe mangroves. One of the main markers of a forest’s carbon 
content is its AGB, which is simple to measure in the field but necessitates the removal of trees, 
hence a different approach is needed [7]. Consequently, there was a need for a better, more 
efficient, and quicker way to investigate mangrove ecosystems. In India, there have been numerous 
attempts to map and classify mangroves. The use of remote sensing data is advantageous because 
it enables change detection studies to be conducted much more easily than field-based estimates. 
This is because remote sensing data can provide quick synoptic coverage with a high temporal 
resolution [11–14]. Monitoring and mapping the changes that have taken place in mangroves are 
absolutely necessary in order to gain a better understanding of how mangroves react to changes in 
climate as well as changes that have been caused by humans. Estimating mangrove AGB is 
necessary for planning the preservation and sustainable use of mangrove resources. Remote 
sensing data is useful for mapping and monitoring vegetation, land cover, and land-use change, it 
remains a key source of information because it is challenging to access dense mangrove areas. 
Radar sensors allegedly have the ability to identify the volumetric properties of dense foliage [15–
17]. Due to polarisation, sensitivity to moisture (dielectric constant), surface roughness, varying 
incident angles, and strong penetration capabilities, SAR has the potential to be used for forest 
investigations [18]. 
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Synthetic Aperture Radar (SAR) has been used in several biomass estimation studies for forest 
vegetation. The purpose of this study was to develop a robust model for distinguishing mangroves 
from non-mangroves and a model for mangrove above-ground biomass estimation using spectral 
signatures (produced by SAR remote sensing) and morphological characteristics of mangroves. 
This model’s foundation is built on the mangrove vegetation, which was measured for height, 
width, latitude, and longitude. The model prepared here takes the sigma values generated by the 
SAR sensors and the ground truth values as input to distinguish mangroves and non-mangroves 
regions and then estimates the AGB for mangroves, with the help of machine learning algorithms 
and also validates allometric models for mangrove above ground biomass estimation The research 
was conducted in the village of Guneri’s mangrove forest. Due to their landlocked location, these 
mangroves are a unique variety. And because these mangroves are being investigated for the first 
time for this kind of research, this study is unique. 

Remote Sensing: Mangrove classification and Mangrove AGB estimation 
For the management and monitoring of mangroves, remote sensing has become essential. The 
majority of the existing mangrove mapping research relies on optical remote sensing data, the most 
common of which are medium-resolution multispectral pictures like those from Landsat [19–22]. 
The accuracy of mangrove extraction will be impacted by the existence of mixed pixels, which is 
determined to be inevitable by the medium spatial resolution. Mangrove extraction uses high-
resolution remote sensing data increasingly, including UAV data [23, 24] and satellites like 
IKONOS [25], ZY-3 [26], and GF-1 [27]. Data from hyperspectral sensors like the Hyperion are 
anticipated to show the potential for accurate and thorough mangrove forest classification. 
Accurate tropical mangrove species discrimination may be one step closer with the use of 
hyperspectral technologies. Many uses in the structure, composition, and physiology of plants have 
already shown the promise of hyperspectral imaging and image processing. The benefit is mostly 
attributable to its capacity to measure reflectance and absorption in a significant number of 
continuous and narrow spectral bands. The 400 to 2500 nm region of the electromagnetic spectrum 
is covered by airborne and satellite hyperspectral data. As a result, it is now much easier to 
characterize and describe the full spectrum of the many floristic classes that make up a mangrove 
forest. Henceforth, hyperspectral data may enhance our capacity to distinguish mangroves from 
other terrestrial forests and then identify these at the species level [28–30]. Coastal wetlands, 
particularly in tropical and subtropical areas, have a lot of overcast and foggy days as well as 
complicated land cover types. Optically available images are highly limited. The advantages of 
SAR satellite imaging include excellent resolution and extensive coverage. With the exception of 
extreme weather, it is not constrained by climatic or meteorological circumstances and can reliably 
collect periodic data. The unique imaging technique of SAR results in issues such as inherent 
speckle noise, shadow, and overlap in SAR images, as well as a low signal-to-noise ratio. Because 
of this, mangrove recognition and extraction using SAR data alone are considered less accurate by 
researchers across the world, but SAR photos are still a helpful addition to optical imaging. 
Numerous studies have demonstrated the utility of longer wavelength L-band SAR data for 
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estimating AGB in tropical forests. Nevertheless, since L-band data from the Advanced Land 
Observing Satellite (ALOS) is not publicly available, it is challenging to estimate and frequently 
monitor the AGB of a vast area using solely L-band SAR data. C-band SAR interferometric 
coherence has shown great promise in estimating biophysical parameters like growing stock 
volume while using semi-empirical models, such as the Water Cloud Model (WCM) and the 
Interferometric WCM, even though C-band SAR backscatter is not suitable for AGB estimation 
of tropical forests. This research is conducted with two objectives: mangrove discrimination and 
mangrove AGB estimation using SAR. Researchers are working in this direction for years, yet 
there is no general way to classify mangroves and estimate AGB, (Table 4 and Table 2) are 
summaries of the most recent work done in this direction. 
Mangrove dynamic monitoring and management depend heavily on accurate mangrove mapping. 
Optical remote sensing images are the primary data source for the generation of mangrove indices 
and mangrove mapping, and numerous studies have shown positive findings in this area. [31] The 
study created the OSCMI (Optical and SAR Images Combined Mangrove Index) based on the 
concept of multi-feature fusion. For efficient and accurate mangrove mapping, an OSCMI-based 
classification scheme was put forth. Using Sentinel1 SAR and Sentinel-2 optical images, 
extraction experiments were carried out in four different types of typical Chinese mangrove 
environments. In [32], using the Google Earth Engine (GEE) cloud computing platform, Sentinel-
1 and Sentinel-2 satellite pictures were combined to create a precise mangrove 
Table 1 Mangrove discrimination from other vegetation using Sentinel imaging and machine 
learning 

Data 
Region/ Forest 
Type 

Method 
Model 
Performance 

Reference 

Sentinel 1 and 
Sentinel 2 

4 mangrove forests 
in China (2022) OSCMI 92%-96% 42 

Sentinel 1 and 
Sentinel 2 

Qeshm, Iran (2021) 
Pixel based 
RF 

93% 43 

LANDSAT 8 
OLI 

Sundarban and 
Andaman, India 
(2018) 

CMRI 73.43% 44 

EO-1 Hyperion 
Sundarban, 
India (2017) 

SVM 98% 45 

ecosystem map of the Hara protected area, Qeshm, Iran, with a 10 m spatial resolution. In this 
context, seasonal optical and synthetic aperture radar (SAR) characteristics were created using 86 
Sentinel-1 and 41 Sentinel-2 data that were gathered in 2019. Following that, seasonal features 
were added to a pixel-based random forest (RF) classifier. This produced an accurate mangrove 
ecosystem map with average overall accuracy (OA) and Kappa coefficient (KC) of 93.23% and 
0.92, respectively. Mangrove species are difficult to distinguish from non-mangrove flora, 
particularly in locations where they coexist with other plant species. In [33], an attempt is made to 
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create a better index using data from the Bhitarkanika Mangrove Forest in Odisha, India’s 
Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water Index 
(NDWI). The correlation between these indices is adverse (r = -0.988; p 0.01). Additionally, at the 
pixel level, the NDWI values were subtracted from the NDVI data. Due to the negative correlation 
between the outputs, subtracting them broadens the upper and lower bounds of the overall output 
as well as the distinct values of two classes with closely related spectral signatures. On the 
Sundarbans and Andaman mangroves (r = -0.987 and -0.989, respectively), the CMRI algorithm 
was used. Terrestrial vegetation has a significant impact on the mangroves’ ability to be accurately 
identified in remote sensing. The paper [34] discusses the classification of mangroves into floristic 
composition classes and the application of specific vegetation indices for extracting mangrove 
forests using Earth Observing-1 Hyperion images over a stretch of the Indian Sundarbans. Both of 
these topics are covered in greater detail. The decision tree algorithm relied on the following five 
vegetation indices in order to generate the mangrove mask: the Mangrove Probability Vegetation 
Index; the Normalized Difference Wetland Vegetation Index; the Shortwave Infrared Absorption 
Index; the Normalized Difference Infrared Index; and the Atmospherically Corrected Vegetation 
Index. Then, using the information included in the mask, three full-pixel classifiers, Minimum 
Distance, Spectral Angle Mapper, and Support Vector Machine (SVM) were assessed. SVM 
outperformed the other two, with a 99.08% total precision. The research shows that Optical images 
have a better capability to classify mangroves. 

 
In recent years, the process of estimating forest AGB has undergone a revolution due to the free 
availability of high geographic and temporal resolution Sentinel series data and a variety of 
machine learning algorithms. A study [35] was carried out on the eastern Indian coast, in the 
Bhitarkanika Wildlife Sanctuary. The AGB maps that are generated by the Deep Learning models 
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and the Interferometric Water Cloud Model (IWCM) are distinct from one another due to the fact 
that they are dependent on different sets of factors. When it came to coherence, the ground and 
vegetation components were particularly important to IWCM, whereas for the Deep Learning 
model, canopy height was the most important factor. However, the insignificance of the changes 
brought about by Deep Learning-based AGB maps may be attributable to a lack of comprehension 
regarding the significance of coherence and VH backscatter. Due to the low canopy penetration 
power of C-band SAR, strong temporal decorrelation caused by a large time gap between 
interferometric picture pairs, and the great spatial variability of mangrove forests, it was found that 
IWCM was an inadequate method for AGB estimation. It is interesting to note that in the 
Bhitarkanika Wildlife Sanctuary, a Deep Learning algorithm was able to interpret the precise link 
between predictor factors and mangrove AGB. A greater emphasis should be placed, rather than 
employing semi-empirical models in AGB estimate studies in mangrove forests using Sentinel 
data, on applying machine learning algorithms such as Deep Learning. The use of remote sensing 
technologies for the assessment of has increased in recent years due to the difficulties associated 
with accessibility within the forests (AGB). For the mangroves of Mundra taluka in Kachchh 
district, western India, [36] uses an allometric model to offer a novel method of estimating AGB 
from dual-pol Sentinel-1A (SAR) data. Polarimetric Radar Vegetation Index (PRVI) is used to 
simulate AGB . The work incorporates AGB time series change detection within the study region 
and argues that combining field measurements, allometric equations, and remote sensing 
technology may be the key to modelling the AGB of mangrove forests. One of the available 
methods, L-band Synthetic Aperture Radar (SAR), can reliably estimate AGB in terrestrial tropical 
forests. Mangrove ecosystems, however, typically have poor accuracy. [37] A study was done to 
model and map AGB using backscatter coefficients from the Advanced Land Observing Satellite-
2 (ALOS-2) Phased Array L-band SAR-2 in a section of the restored mangrove forest at Mahakam 
Delta, Indonesia (PALSAR-2). The model’s performance was assessed using three different 
methods: independent validation (R2 of 0.89 and RMSE of 23.16 tonnes ha1), random k-fold cross 
validation (R2 of 0.89 and RMSE of 24.59 tonnes ha1), and leave location out cross-validation 
(LLO CV) (R2 of 0.88 and RMSE of 24.05 tonnes ha1). [38] a semi-empirical model based on 
multi-linear regression coefficients of HH and HV polarisation backscatter with field-measured 
forest biomass was used to retrieve temporal forest AGB of Gujarat, India, from global SAR 
mosaic products in HH/HV polarisations produced from Japanese ALOS-PALSAR 1/2 data. This 
model was used to retrieve temporal forest AGB of Gujarat, India, from global SAR mosaic 
products in HH/HV polarisations. The primary types of forests that can be found in Gujarat are the 
tropical moist deciduous forest, the tropical dry deciduous forest, the northern tropical thorn forest, 
and the littoral and swamp forest. In order to produce Gujarat’s biomass maps, various model 
coefficients had to first be established for the various types of Gujarat’s forests. These were done 
based on in-depth ground measurements of the forest’s parameters. High correlations between HV 
and HH/HV and field-measured biomass were found across various forest vegetation types, with 
biomass densities ranging from 20 to 120 t/ha. According to studies on several Indian mangrove 
species, AGB ranges from 20.9 t/ha in the Sundarbans region to 196.48 t/ha and 236 t/ha for 
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mangroves on the Kerala coast, respectively. Since machine learning techniques have never been 
utilized for AGB estimation of mangroves, their results cannot be directly compared to those of 
semi-empirical models. A study of earlier studies reveals that semi-empirical and machine learning 
models are rarely used in AGB Estimation in the setting of Indian tropical forests [39– 41]. This 
research is conducted on the Landlocked mangrove forest of Gunneri (one of its own kind) for the 
first time, with the objective of discriminating the mangroves from other vegetation and estimating 
the AGB of classified mangroves. Mangrove is classified with a pixel-based Random Forest 
algorithm and AGB estimation model is formed using a machine learning algorithm. Several 
experiments were performed in order to map above-ground biomass (AGB) of mangroves, and it 
is observed that Extra Tree Regression is the most suited model. 

Materials and Methods 

Study Area 
The Kuchchh district in Gujarat is home to one of the most extensive mangrove forests in India. 
Some of the mangrove species that can be found in the Kachchh district include Avicennia marina, 
Avicennis officinalis, Avicennia alba, Rhizophora mucronata, Ceriopstagal, and Aegiceras 
corniculatum. The coastal areas of the Kachchh district are home to a variety of mangrove 
association species, some of which include Salvadora oleoides, Suaeda fruticosa, and Suaeda 
nudiflora. They grow in the areas between land and sea known as intertidal zones and estuary 
mouths, which makes them an essential habitat for a wide variety of marine and terrestrial plant 
and animal life [42]. 

The study area Guneri, figure 1, is a natural inland mangrove site that spans 33 hectares, including 
the buffer zone, and is about a century old. Due to their unique natural condition, the Gujarat 
government is seeking to declare the inland mangrove site in Guneri village of Kutch on the 
Western IndoPakistan border as a Biodiversity Heritage Site (BHS). Mangroves are typically 
found in coastal locations. However, the Guneri location features a significant number of inland 
mangroves. It is also home to animals such as chinkara, ratel, and migratory birds. Mangroves are 
small plants or trees that thrive in 
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Fig. 1 The geographical extent of the Guneri Mangrove forest near Indo –Pak border, Kutch along 
with the spatial distribution ground truth sample points over the study area 

saline or brackish water and are found in coastal areas, according to the definition. Guneri 
mangroves in Kutch, on the other hand, are fully landlocked and so unique. According to the 
Gujarat Institute of Desert Ecology’s marine and coastal ecology section, Kutch’s inland 
mangroves are one of only three or four of their sort in the world (GUIDE). Brazil, Peru, and South 
America are the others. The Guneri mangrove has a fascinating history. Approximately two 
millennia ago, the Rann of Kutch was a shallow sea. As the water level dropped over time, the 
dried soil was lifted owing to tectonic upheaval. The Arabian Sea moved away from the coast by 
100-150 kilometers. As a result, the inland mangroves of Guneri have survived thanks to a 
subterranean source of brackish or saline water. These mangroves, according to researchers, are 
part of ancient bio-genetic pools. Seed distribution and propagation are aided by a plentiful 
subsurface supply of brackish water. These groves are fast deteriorating earlier they used to be 30-
35 hectares in size, but now they have reduced to just around 13 hectares. It has ceased to 
regenerate; propagation has ceased. The hurricane of 1998 devastated a large portion of the groves, 
and the wood borer bug decimated the rest. It’s also possible that the subsurface brackish water 
supply has been cut off. The precise cause is unknown; however, it could be due to human activity 
or climatic changes. As a result, the Guneri mangrove is an important study site[36, 43]. Avicennia 
Marina is the only species that dominates the site, as shown in figure 2. The ground truth was 
gathered between March 30ˆth and April 20ˆth, 2022. Random sampling was used to determine 
various data such as GPS positions, mangrove height, breast height breadth, and girth diameter. 
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Fig. 2 Actual images of Avicennia Marina, the only species that dominates the site 

Data Collection 

Ground Truth Data Collection 
Remote sensing research can’t be done without collecting data from the ground. It is usually done 
to calibrate a remote sensor, help correct remote sensing data, provide reliable data to identify each 
feature of interest in an image to help and guide the process of image interpretation/analysis, find 
representative areas of each image feature to generate their spectral signatures in order to model 
the spectral behaviour of specific Earth surface features, and check the accuracy of thematic maps 
created. Like most types of forests, mangroves can be divided into five carbon pools: 1) biomass 
of living plants above ground, 2) biomass of living plants below ground, 3) dead wood, 4) forest 
floor (litter), and 5) soil. Non-tree plants and litter are usually small parts of the ecosystem in 
mangroves, so they can often be left out of measurements without affecting how accurate the 
sample is. Trees are always part of the carbon pool study because they are easy to measure, there 
are good mounting calculations for them, and land use has a big effect on them [44]. The 
aboveground carbon pool is dominated by trees, which provide a clear sign of land-use change and 
ecological health. It is critical to measure trees precisely and completely. The basic idea is that 
allometric equations are used to estimate tree biomass and carbon stock by species using 
measurements of stem diameter (and sometimes height). The study site in the research is Guneri 
Mangroves of Kutch, which are different from coastal mangroves and are having tree-like 
structures instead of shrubs, hence they are a good carbon pool for above-ground biomass. The 
ground truth data is collected through simple random sampling. Here observation locations are 
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picked at random as shown in Figure 3. Without any human bias, randomness assures that all 
portions of the study area have an equal probability of being sampled and a total of 123 trees were 
randomly picked and measured for their height and DBH. DBH was calculated by measuring the 
circumference of the stem 4 and a ½ feet above the ground as shown in the figure (Fig. b, c, d). 
The circumference was calculated to DBH using the equation 1: 

 DBH = circumfrence/π,(where π = 3.14). (1) 

 

Fig. 3 (a) Random Sampling (b) technique to measure the circumference of stem for DBH 
calculation DBH (c) and (d) physical measurement circumference 

The destructive traditional harvesting methods are the most effective and efficient method for 
estimating mangrove AGB. This method can be used to construct allometric equations based on 
the measured data from the harvested trees, such as the diameter at breast height (DBH), tree 
height, and timber volume. However, because mangroves are slow-growing trees, the conventional 
method of determining AGB is not recommended. As a result, remote sensing is playing an 
important role in mapping and estimating AGB of mangroves. In the current study to generate the 
ground truth AGB an existing allometric equation [45] is used, as shown in equation 2; the choice 
of an allometric model is crucial and should be based on the study’s goal [46] and the dataset’s 
characteristics. Allometric models should reflect the DBH range and ecology under investigation 
[47]. 
 AGB = 0.162 ∗ H1.81∗ DBH1.24. (2) 
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where, H is height and DBH is breast height diameter . 

Reference Samples 
Accurate visual interpretation in this work required gathering reference data from high-resolution 
satellite images. Additionally, earlier mangrove ecosystem maps and false-colour composite 
(FCC) satellite images were employed. To lessen the problem of mixed pixels by avoiding 
fragmented areas, homogeneous sites were taken into consideration for reference sample 
collecting. Three classes(mangrove, non-mangrove vegetation, and barren land) in total were 
created, each with sufficient reference samples and the right spatial distribution, as shown in figure 
no. . 
The reference samples for the training and test were then arbitrarily split into two groups. Due to 
random splitting, the final classification scores exhibit little bias. The main issue with random 
sampling, however, is the information leak between training and test samples. In other words, due 
to pixel-level random sampling, the training and test datasets both include reference samples taken 
from the same polygons. The spatial auto-correlation of the training and test datasets increases as 
a result of this issue, which lowers the generality of the classifier and decreases the accuracy of 
evaluation results [48, 49]. As a result, the step was carried out at the polygon unit using a random 
splitting method, which also served to spatially separate the data used for training and testing. It is 
important to note that the random dividing phase was carried out ten times in order to facilitate the 
implementation of a cross-validation strategy for performance evaluation. This was done in order 
to demonstrate not only the applicability but also the resilience of the method that was suggested 
for accurate and comprehensive mangrove ecosystem mapping. 

Satellite Data Collection 
A mangrove ecosystem map was created using the time-series Sentinel-1 satellite photographs. 
The mangrove ecosystem’s water level variations and tidal effects can also be taken into account 
using time-series data, which can improve the accuracy of the categorization outcomes [50]. The 
European SAR satellite Sentinel-1 has a temporal resolution of six days, and it collects data in 
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Fig. 4 Reference samples collected from study area using SNAP 

the C-band with dual polarisation throughout the year. For this analysis, we utilised Level-1C 
ground range detected (GRD) images with a spatial resolution of 10 metres in both the ascending 
and descending directions. Sentinel-1A images were acquired for the year 2022 using the fine 
dual-polarization mode IW mode to produce the Ground Range Detected (GRD) product. The VV 
and VH polarisations are both present in the GRD. The images were selected with consideration 
given to the availability of data and the data collection taking place during periods of low tide. The 
Dual-Pol SAR that was utilised for the study is from the 17th of April in 2022. The detailed 
characterization of the image is per the table 3. 

Table 3 Characteristics of Sentinel-1 SAR image 

Product Type GRD 

Mission Sentinel Sentinel-1A 

Acquisition Mode Interferometric 
Wide (IW) 

Polarization VV, VH 

Mode Fine Dual Pol 

Duration April 17th, 2022 

Coverage (Swath 
Width) 

250km 
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Geometric 
Resolution 

5m by 20m 

Pass Direction Desencding 

Geodetic CRS WGS 84 

SAR backscatter coefficient (VV & VH) extraction from ground truth data 
As the backscatter coefficient indicates the microstructure of the things existing on the earth’s 
surface, the correlation between the dielectric constant and the above ground biomass makes SAR 
data an excellent tool for determining how much vegetation is in the ground. For a given vegetation 
condition (forest, grassland, and desert etc.), there is a linear relationship between radar backscatter 
and volumetric tree structure [51]. Ground truth data is needed to estimate above-ground biomass 
using SAR image formats, including the height and width of the tree as well as the diameter at 
breast height, or DBH, which is a common way to represent the diameter of the base or branch of 
a growing tree. In this study, ground truth data (height, width and DBH) were collected and tagged 
with a GPS location representing the coordinates (latitude and longitude), these collected 
coordinates were projected on a pre-processed on Sentinel-1 SAR imagery, and VH VV 
backscatter coefficient values were extracted using QGIS 3.15 and python script. The extracted 
VH and VV values were correlated with the actual biomass data which was calculated from the 
collected observations from the sites. Overall, 123 separate tree samples were collected and AGB 
was calculated from the study region for the purpose of estimating the biomass of the trees. These 
observations were all geo-tagged and then superimposed on Sentinel-1 SAR images to obtain the 
values for the backscattered coefficient. 

Synthetic Data Generation 
Mangrove sampling and height and breadth measurements are extremely challenging since 
mangroves are prevalent in geographically challenging areas. Even so, we made an effort to gather 
as much real-world information as we could. Figure No. illustrates the site’s problem. However, 
there weren’t enough sample points collected to develop a model or train/test any machine learning 
models. So, in order to create a reliable model, we turned to the creation of synthetic data. 
High volume, high velocity, and high diversity datasets are readily available, and they can be 
combined with sophisticated statistical methods for information extraction to enhance decision-
making and speed up research and innovation. In addition, sharing many large-scale datasets that 
are highly sensitive (such as those in the fields of health or finance) may breach fundamental rights 
protected by current privacy laws (such as the GDPR or CCPA), and sometimes the data collection 
method is problematic due to difficult geographical dimensions. Numerous instances from the real 
world show that high-dimensional, frequently sparse datasets are naturally vulnerable to privacy 
attacks and that current anonymization techniques do not offer a sufficient defence. Due to this 
restriction on data sharing, machine learning and data science method development and application 
are slowed down [52]. 
A model produces fictitious data, frequently with the intention of substituting it for actual data. 
The end-user can theoretically change the amount of personal information disclosed by synthetic 
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data and manage how closely it resembles actual data by regulating the data-generating process. 
In addition to addressing privacy issues, one can build convincing hypothetical situations and 
correct for biases in historical datasets. A significant amount of synthetic data can be produced 
from a small number of well-labeled data points, which would save the time and effort required to 
handle the enormous amount of realworld data. There are numerous methods for creating synthetic 
data, including SMOTE, ADASYN, Variational AutoEncoders, and Generative Adversarial 
Networks. We chose synthetic data creation since we had trouble finding additional data points 
during this research to help us create a model. In this study, generative adversarial networks were 
utilized to create artificial data (GAN). Many deep learning and machine learning architectures are 
vulnerable to adversarial manipulation, meaning that the models fall short when fed input that is 
different from the data used for training. Ian Goodfellow [53] introduced Generative Adversarial 
Networks (GANs) to address the adversarial challenge, and these networks are now widely used 
to produce synthetic data. A typical GAN has two parts, the discriminator and the generator, which 
are in competition with one another. The heart of the GAN is the generator, which uses attributes 
from real data to create false data that mimics genuine data. The discriminator compares the 
generated data to the real data and determines whether or not the generated data appears to be real. 
It then gives feedback to the generator so that it can enhance the quality of its data generation The 
actual ground points were inputted into GAN, to generate synthetic data. Figure 5 (a) is the 
principal component analysis where the comparison of the distribution of actual points with 
synthetically generated points is shown, 5(b) shows the analysis of width and latitude distribution 
and 5 (c) shows the analysis of height. Through these generated points we got a respectable amount 
of data points to build our model. 

Methodology 
Figure 5 presents the research framework, which gives a summary of the suggested strategy. This 
part is divided into three subsections, each of which provides a detailed explanation of the above-
ground biomass estimating model, classification methodology, and preparation of satellite data. 

SAR Data Pre-processing 
Sentinel-1 With the fragment of (Image Collection ID: COPERNICUS/S1 GRD), GRD data are 
accessible within GEE. Because the GEE developers first apply a number of pre-processing 
processes to them, they are typically readyto-use data. These data have previously been ortho-
rectified and transformed to the backscattering coefficient (dB). Each Sentinel-1 image underwent 
five 
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Fig. 5 Results of Synthetic data generation 

 

Fig. 6 Research Framework 

pre-processing phases, including the following: orbit file correction, GRD border noise reduction, 
thermal noise removal, radiometric calibration, and terrain correction. Using the following 
equation, the digital numbers (DN) of SAR intensity data were transformed to Normalized Radar 
Cross section (NRCS or gamma-0) data (in dB): 

 yo(dB) = 10 ∗ log10(DN)2− CF (3) 

CF is the calibration factor offered in the metadata file for each polarisation data point. The DN 
values of the SAR image were transformed into normalized backscatter values with the below 
coefficients [54]: 
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 yo(dB) = 10 ∗ log10(DN)2− 83 (4) 

Here, 83 is the calibration factor for dual polarized data. 

Mangrove Classification 
Using satellite imagery, various categorization techniques have been used to map mangroves. In 
this regard, selecting discriminative features and the best classifier is equally crucial and has a 
direct impact on the classification outcomes. Machine learning algorithms must be used to 
accurately and affordably categorize and map mangrove forests, and these algorithms must be 
learned using training datasets that have greater spatial resolution and algorithm optimal 
parameterization. The RF technique has been used in the past to map and categorise mangroves 
using remote sensing data and can offer a greater grade of classification than linear classifiers. The 
system does well at mapping mangroves on a regional scale and at handling data that contains 
unclassified pixels. One of the most well-liked techniques for non-parametric ensemble machine 
learning and high-quality mangrove categorization and environmental modelling is the random 
forest algorithm. Regression and classification trees are combined in it (CART) [55]. Random 
forest (RF), a classifier, has consistently shown to be a successful approach for mapping 
mangroves [56–58]. For example, when [59] tested four regularly used non-parametric classifiers 
for mapping the mangrove ecosystem, the RF classifier came out on top along with the support 
vector machine (SVM) with linear and outspread basis function kernels and regularised 
discriminant analysis. The tremendous potential of the RF classifier for mapping the mangrove 
environment led to the implementation of a pixel-based RF classifier within GEE for this project. 
In this case, an RF classifier was used to classify the photos that made up the seasonal Sentinel-1 
data. The RF classifier was trained using half of the reference samples in the meantime. Numerous 
tuning parameters for the RF classifier have an impact on the classification step’s training stage, 
directly affecting the classification outcomes. The number of trees and the variables at each node 
are the parameters that have the most influence. 

Mangrove Above Ground Biomass Estimation 
Hypothetically, stand density, DBH, and species all have a direct impact on forest AGB. An 
important topic is how to utilise multisource remote sensing datasets to their maximum potential. 
We have the biomass and associated imagery data over a set of sites inside a research region 
following the field campaign, remote sensing data acquisition, and processing. Assume, B ij = 
1,2,3,...,N is the biomass and X is assumed to be the data vector. The AGB estimation is to discover 
the prediction model P: 

 Bˆ = P(X) (5) 

The purpose of developing this model to minimize the error of estimation: 
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  (6) 

Machine learning techniques such neural networks, K nearest neighbor, regression trees (RT) like 
Extra Tree Regressor, XGB Regressor, AdaBoost Regressor, Random Forest, and MaxEnt are 
some linear and nonlinear regression machine learning methods that can be used as the prediction 
model. When creating prediction models using a parametric method like regression analysis, 
factors such as the spectral responses at optical data, backscattering, and attributes obtained from 
PolSAR and PolInSAR data, various indices from lidar data, and picture textures can be employed 
directly. The majority of machine learning algorithms, including MaxEnt, are regarded as 
nonparametric techniques that automatically pick up on intricate patterns and base judgments on 
data. It is possible to use data from various sources and in various formats, and the method for 
estimating biomass is known as spatial modelling of ABG [60]. Within the community of remote 
sensing research and applications, classification and random trees have grown in popularity [61, 
62]. Random tree clearly outperforms traditional statistical techniques. It provides for the 
possibility of interactions and non-linearities across variables because no a priori assumptions are 
made regarding the nature of the relationships among the response (for example, biomass) and 
predictor factors (for example, remote sensing data). However, the precise selection of the training 
dataset accounts for a portion of the output error in a single RT. Random Forests are made to 
generate precise forecasts without over-fitting the data. Random forests refer to the process of 
building multiple trees using a randomised subset of variables using bootstrap samples. A ”forest” 
of trees is created through the growth of a vast number of trees (500-2000). A randomly selected 
subset of the entire number of predictors is utilised to determine the optimal split at each node [63–
66]. Regression models for calculating AGB might be simple or multi-linear [67–69] or can be in-
depth machine learning (ML) techniques [70–72]. Non-parametric methods utilising a variety of 
ML algorithms have shown to be more successful than parametric techniques using linear models 
for mapping and predicting forest AGBs. Lot of research is done in field of mangrove AGB 
mapping using non-parametric regression methods such as artificial neural network(ANN), 
random forest regression (RFR), support vector regression (SVM) and some recent studies have 
experimented with gradient boosting decision trees (GBDT) and extra gradient boost regression 
(XGBR) techniques [68, 70, 73, 74]. Particularly, a quantitative comparison of cuttingedge ML 
approaches for predicting AGBs in various forest ecosystems appears to be lacking in the existing 
research. 

Data Normalization 
It is common practise to use the process of normalisation in order to get data ready for machine 
learning. The objective of normalisation is to convert the values of the numeric columns in the 
dataset to a common scale without introducing any distortion into the variations in the value 
ranges. When it comes to machine learning, not every dataset requires the normalisation step. It is 
only required in situations where the feature has multiple ranges. Gradients may end up taking a 



 
 
 

3131 
 

Ann. For. Res. 66(1): 3114-3142,  2023 
ISSN: 18448135, 20652445 

ANNALS OF FOREST RESEARCH 
www.e-afr.org 

 

© ICAS 2023 

long time, can fluctuate back and forth, and take a long time before they can eventually find their 
way to the global/local minimum because various features do not have identical ranges of values. 
Variables evaluated at varying scales have a differential impact on the model-fitting and 
modellearning functions; in some cases, these differences can even result in bias. In order to 
resolve this potential problem, feature-wise normalisation is typically carried out prior to the fitting 
of the model. In the current study, normalizing the input variables was observed to be important 
as the input features, SAR backscattered coefficients (VV, VH) and the ground truth AGB 
calculated through the allometric equations were not falling in the column range. Henceforth, the 
input features were normalized through the min-max normalization technique. The first step in the 
process involves linearly transforming the data using min-max normalisation, which is also known 
as feature scaling. All of the scaled data that fall within the range can be obtained by using this 
method (0, 1). The following is the formula for the min-max normalisation: 

  (7) 

The associations between the original data values are preserved by minmax normalization. We 
will have reduced standard deviations as a result of this restricted range, which can reduce the 
impact of outliers. The objective to use min-max normalization was to preserve the relationship 
among the original data values. This study is extensive research on Guneri mangrove forest, 
employing the usage of advance non-parametric machine learning algorithms. Where in the 
backscatter parameters (VV,VH) of the site locations are modelled against the ground truth values 
of the study site and the normalized field AGB using Extra Tree Regressor, XGB Regressor, 
Random Forest Regressor, 
Bagging Regressor, Ada Boost regressor, K-Neighbors Regressor, SVR and MLP regressor. 
Comparative study of all the methods is shown in the study. 

Results and Discussion 

The section on results and discussion is divided into two subsections. The first subsection will go 
over the relationship between the derived biomass and the back-scattered values, as well as how 
to generate a biomass map from the predicted biomass values. The second subsection will go over 
land use land cover (LULC) mapping, and how to identify mangrove forests using random forest 
classification. 

Above Ground Biomass (AGB) Estimation 
The linear correlation between AGB and the backscattered values (VH & VV polarisation) was 
initially checked using the Multiple Linear Regression (MLR) technique on the collected 123 
sample points, and 52.17% validation accuracy was achieved on 50 test dataset with RMSE of 
0.16. Generative Adversarial Network (GAN) was used to generate synthetic data from the 
provided sample because it appeared that there were not enough data points to train and generate 
any promising models. With the use of GAN, data was doubled, totaling 246 sample points, 
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coordinates for the generated samples were also generated using the same technique and cross 
validated by overlaying it on the Google Earth image, ensuring that all of the generated data points 
were within the study area. The produced dataset was once more subjected to MLR, however this 
time there was only a very slight improvement in the validation accuracy of 53.81% with RMSE 
of 0.16. To address this, we applied maximum normalisation to the AGB values, which divides 
each row by its highest absolute value rather than its average. This technique increased accuracy 
by 12%. Other normalisation techniques, such as mean, min-max, and range, were also used, 
however the outcome was marginally lower to that of maximum normalisation. 

 

Fig. 7 Results of Synthetic data generation 

The generated data was then tested using several regression methods such as Extra Trees 
Regressor, XGB Regressor, Random Forest Regressor, Bagging Regressor, and Decision Tree 
Regressor. The comparative study of the selected models is shown in the figure 7, and Extra Trees 
Regressor demonstrated a good validation accuracy of 66% with 0.10 RMSE, followed by XGB 
Regressor (65%), and Random Forest Regressor (65%). 
We have considered evaluating the individual polarised bands (VV and VH) using the extra tree 
regressor model as well as the xgb regressor model based on the low RMSE achieved when 
compared with the other three regressor model. The predicted and actual AGB from individual VV 
and VH bands, as well as combinations of the two, are compared in figures 8 & 9 , respectively. 
Table 4 displays the performances of the models on different SAR band combinations. The mean 
cross validation score of 0.37 was high on the VH band when the extra tree model was used, 
whereas the score was only 0.35 for the same VH band when the XGB regressor was used. From 
this we can conclude that VH band contributes more in estimating above ground biomass. 
After taking the VH band into consideration, we used an extra tree regressor to make a prediction 
about the AGB of the entire Guneri area. The heat map shown in figure 10 was generated from the 
predicted AGB by using the VH SAR band. The area with an AGB ranging from 171-193 kg/m2 
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had the highest biomass, followed by the area with an AGB ranging from 128-171 kg/m2. Land 
that has a biomass anywhere between 0 and 107 kg/m2 can be referred to as barren land. 

 

Fig. 8 Predicted AGB values using Extra Tree Regressor 

 

Fig. 9 Predicted AGB values using XGB Regressor 

 

Fig. 10 Heat map generated from predicted AGB using VH band Table 4 Mangrove discrimination 
from other vegetation using Sentinel imaging and machine learning 
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Models Band Used R2 RMSE MSE 
Mean 
CV 
Scores 

Extra Trees 
Regressor Sigma0 VH db 0.65 0.12 0.01 0.37 

Extra Trees 
Regressor 

Sigma0 VV db 0.65 0.11 0.01 0.29 

Extra Trees 
Regressor 

Sigma0 VH db 
& 
Sigma0 VV db 

0.65 0.11 0.01 0.34 

XGB Regressor Sigma0 VH db 0.65 0.12 0.01 0.35 

XGB Regressor Sigma0 VV db 0.65 0.12 0.01 0.27 

XGB Regressor 
Sigma0 VH db 
& 
Sigma0 VV db 

0.65 0.11 0.01 0.31 

LULC mapping of the study area 
If broadly categorized the land cover features present in the study area then it contains only three 
types of features namely barren land, mangrove forest and grass/Non-mangrove. We will be using 
supervised classification techniques to classify the study area into three mentioned categorise. 
Random Forest machine learning algorithm was used for LULC classification. We first assigned 
each pixel in the Sentinel-1 SAR image to a specific land use or land cover class by referring 
Sentinel-2 multi-spectral and google earth image. The RF algorithm uses multiple decision trees 
to make predictions, and the final prediction is determined by a majority vote among the individual 
trees. Random Forest is known for its high accuracy, ability to handle large datasets, and ability to 
handle missing data. It can also be used to identify important features in the data, which can be 
useful for understanding the factors that influence land use and land cover patterns. Figure 11 (a) 
shows the classified map generated using RF, (b) optical image of the study area, and (c) geo-
referenced classification map overlaye on google earth image. The achieved accuracy with K fold 
RF classification is 91%, the RMSE is 0.526, the contribution of VH spectrum is 0.506, and the 
contribution of VV spectrum is 0.339. According to the classified map, the overall land distribution 
of the study area is as follows: 28% barren land, 18% mangroves, and 54% grass/non-mangrove. 
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Fig. 11 Classified LULC map using random forest ML techniques 

Conclusion 

The landlocked inland Guneri mangrove forest is one of the oldest mangrove forests in India, 
which is absolutely disconnected from the sea and makes it one the very few places in the world 
to sustain such a unique ecological feature. Besides having such uniqueness, these mangroves are 
overlooked. Hence, this research is an initiative that can help preserve this bio-diversified heritage 
site. In this study a workflow is proposed to produce a mangrove ecosystem map and mangrove 
AGB estimation resulting in respectable accuracy. For mangrove and non-mangrove classification, 
a simple but robust Random Forest classifier is used, which produces an average accuracy of 91% 
and RMSE of 0.506. For AGB model generation machine learning techniques are applied to the 
datasets. The generated data were then tested using several regression methods such as Extra Trees 
Regressor, XGB Regressor, Random Forest Regressor, Bagging Regressor, and Decision Tree 
Regressor. The comparative study of the selected models is shown in the figure above, and Extra 
Trees Regressor demonstrated a good validation accuracy of 66% with 0.10 RMSE, followed by 
XGB Regressor (65%), and Random Forest Regressor (65%). This work validates the applicability 
of Random Forest (RF) and Extra Trees Regressor algorithms for mapping and estimating AGB 
for a unique landlocked mangrove site of Guneri, and it is observed that the results and robustness 
of the model are highly affected by the usage of a larger dataset and the geographical parameters 
of the study site. 
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