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Abstract     
A new Bayesian lasso left censored regression (NBLLCR) method is proposed. This 

proposed method is presented by continuous uniform distribution (− , ) with standard 

exponential distribution for a mixed representation of the Laplace distribution. The proposed 
method is compared with several existing Bayesian and non-Bayesian method using simulation 
examples and real data analysis. The results of the simulation studies and real data analysis show 
that the proposed method perform very well compared with other approaches.   
Keywords: variable selection, left censored data, Bayesian regression, Laplace distribution. 
1. Introduction  

The concept of regression is one of the parametric statistical methods that indicate the 
extent to which the dependent variable value is affected by the change in the values of the 
independent variables. The linear regression model is given by the following formula: 

𝒚 = 𝑿𝜷 + 𝑼,  𝑼 ~ 𝑁(𝟎, 𝜎 𝑰)    

 where 𝒚 is a vector of dependent observations, 𝑿 is a matrix of independent observations, 𝜷 is a 
vector of regression coefficients, and 𝑼 is a vector of random errors.  
The ordinary least squares method is one of the most popular traditional methods because it gives 
good predictions under specific assumptions. The least squares estimator is:  

𝜷 = (𝑿′𝑿) 𝑿 𝒚, 
It makes the sum of squared errors (SSE) as minimum as possible. 
Recently, a lot of effort has gone into developing different methods of variable selection in high-
dimensional models. Regularization methods have grown in popularity as a result of their ability 
to at the same time select and estimate important coefficients. As a result, the variable selection 
(VS) characteristic was considered very important in the data analysis, because determining the 
important variables in the model can be difficult when the number of covariates is large. Donoho 
and Johnstone (1994) used for the first time, regularization techniques (VS). Where they proposed 
the soft-threshold estimator to obtain a smooth estimation of a function in the wavelet 
approximation. Tibshirani developed it after that in 1996 to obtain an estimate of the coefficients. 
The lasso technique can be applied in various statistical models. High predictive accuracy by 
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reducing some coefficients to zero and thus decreasing the value of the variance while sacrificing 
a little bias, especially when the sample size (𝑛) is small and the number of predictors (𝑝) is large. 
Increasing the interpretability of the model. We often want to find a smaller set of predictors that 
have the strongest effects when we have a large number of them. The (VS) is used in regularization 
methods as part of the parameter estimation process, and examples of regularization techniques 
are lasso (Tibshirani, 1996), SCAD (Fan & Li, 2001), elastic net (Zou & Hastie, 2005), adaptive 
lasso (Zou, 2006), adaptive elastic net (Zou & Zhang, 2009), and MCP (Zhang, 2010). The 
Bayesian method is one of the important methods used in estimating the parameters of the model 
because of its importance in finding accurate estimates of the parameters and in overcoming the 
problems facing the estimation process using classical methods (Rencher & Schaalje, 2008). The 
Bayesian method in the lasso technique has become of great interest in recent years because of its 
great importance in inference. Park and Casella (2008) suggested the Bayesian lasso regression 
for linear models. To mix the normal distribution with the exponential distribution in representing 
the density function of the Laplace distribution. Hans (2009) compared the standard lasso 
regression and the Bayesian lasso regression and found the standard lasso method is not necessarily 
in agreement with the predictions of the Bayesian method. Mallick and Yi (2014) proposed the 
use of a uniform distribution of the scale mixture with a specific gamma (2, λ) by introducing a 
new Bayesian lasso method to solve the lasso problem in representing the density function of the 
Laplace distribution. Alhamzawi (2016) proposed a new method for the evaluation of the Tobit 
quantile regression model using a Bayesian elastic net. The method is called sparsity. He also used 
the gamma priors to develop a hierarchical prior model and introduced a new Gibbs sampling 
algorithm for the MCMC algorithm. The results of the study revealed that the proposed model 
outperforms other regularization methods. Alhusseini (2017) introduced the proposed model for 
the Tobit regression based on the lasso method. The Laplace distribution is a scale mixture of 
definite gamma and uniform distribution. The new Gibbs sampling algorithm has also been 
proposed. A simulation study and real data results of the studies revealed that the proposed model 
outperforms other methods. Flaih et al. (2020) introduced a new hierarchical model with new 
Gibbs samples as Bayesian analysis. A mixture of the normal distribution with Rayleigh density 
was used to represent the density function of the previous Laplace distribution. 
In this paper, we propose a mixed representation of the Laplace distribution by following 
mathematical procedures and transformations for the mixed representation of the Laplace 
distribution, and a representation was obtained expressed by the continuous uniform distribution 

(− , ) multiplied by the standard exponential distribution. This proposal was mapped to both 

the Bayesian regression of the lasso method and to censored data from the left side. 
2.  Left Censored Data  

The latent variable in many real-world applications has a high number of observations that 
are less than a specific value, which is known as left censored data. These facts have been found 
in numerous scientific disciplines such as; economy, medicine, chemistry, and physics. When the 
values of the dependent variable are unknown but the values of the independent variables are 
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known, censored regression models are utilized, if the dependent variable's actual values are 
greater than the lower limit, they are observed. 

𝑦 =
𝑦∗        𝑖𝑓   𝑦∗ > 𝑦 ,

𝑦         𝑖𝑓   𝑦∗ ≤ 𝑦 ,
 (1) 

                                  𝑦∗ = 𝒙𝒊𝜷 + 𝜀 , 𝜀  ~ 𝑁(0, 𝜎 ) 

 
where 𝑦  dependent variable, 𝑦∗ laten variable (unobserved),  𝑦  is the restriction point, 𝒙𝒊 is a 
vector of predictors, β is a vector of the regression coefficients, and 𝜀𝑖 is an error term. The 
censored regression model is the Tobit model when (𝑦 = 0).  
 

𝑦 =
𝑦∗      𝑖𝑓   𝑦∗ > 0,

0        𝑖𝑓   𝑦∗ ≤ 0,
 𝑖 = 1, … , 𝑛, 

                                 𝑦∗ = 𝒙𝒊𝜷 + 𝜀 . 𝜀  ~ 𝑁(0, 𝜎 ) 

If no data are censored, the Tobit model is the same as an OLS regression. If the actual value is 
less than a cutoff point 𝑦 , the left censored value is unobserved. (Carson  & Sun, 2007; Amemiya, 
1984; Anastasopoulos et al., 2008; Chib, 1992; Tobin, 1958; Alshaybawee et al., 2017; Alhamzawi 
et al., 2011; Alhamzawi & Ali, 2018; Alhamzawi, 2021).  
3. The Proposed Scale Mixture  
Based on the following mathematically fact,  

𝜆𝑒
 

  
 | | 

𝑑𝑤 = 𝑒
 

| |

 (2) 

we can propose the following scale mixture formula. In (2), let 𝑥 = 𝛽, 𝜆𝑤 = 𝑧, and by multiply 

both sides by  , we get  

𝜆

2𝜎
 𝜆𝑒

 

  
| |

1

𝜆
𝑑𝑧 =

𝜆

2𝜎
𝑒

 
| |

 

𝜆

2𝜎
𝑒

 
| |

=  
𝜆

2𝜎
𝑒

 

  
| |

𝑑𝑧 (3) 

so, the formulation (3) is the scale mixture of standard exponential mixing with uniform (− , ). 

3.1 The Hierarchical Prior Model of Left-Censored Data 
Based on the proposed scale mixture (3), and (1). The hierarchical prior model is 

formulated as follows: 

𝑦 =
𝑦∗        𝑖𝑓   𝑦∗ > 𝑦 ,

𝑦         𝑖𝑓   𝑦∗ ≤ 𝑦 ,
 (4) 
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𝑦∗|𝑿, 𝜷, 𝜎  ~ 𝑁(𝑿𝜷, 𝜎 𝑰 ), 

𝜷| 𝜎 , 𝜆 ~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 −
𝜎

𝜆
,
𝜎

𝜆
, 

𝜎  ~ 𝜋(𝜎 ) 𝑑𝜎 , 

𝜆 ~ 𝐺𝑎𝑚𝑚𝑎(𝑐 , 𝑑), 

𝑧 ~ 𝐸𝑥𝑝(1). 
Where 𝑿 is the standardized covariate matrix, and 𝒚 

∗ are the centered unobserved response variable 
values.  
3.2 The Gibbs Sampling Algorithms 
We suppose that the full joint density as follows: 

𝑓(𝒚 
∗|𝜷, 𝜎 ) 𝜋(𝜎 ) 𝜋(𝜆) ∏ 𝜋 (𝜷|𝜎 , 𝜆) 𝜋 𝑧  𝐼 𝑧 >   

= 𝑒𝑥𝑝 −
1

2𝜎
(𝒚∗ − 𝑿𝜷) (𝒚∗ − 𝑿𝜷)  

(𝜎 )

𝛤(𝑞)
 𝜃  𝑒  

( )

( )
 𝑑  𝑒  𝑒 ∑  ∏ 𝐼 𝑧 >    

Now, the full conditional posterior distributions are defined by: 
1. The full conditional posterior distribution of 𝒚 

∗ is: 

𝑦∗|𝑦  , 𝜷 ~ 
𝑦                            𝑖𝑓   𝑦∗ > 𝑦 ,

𝑁(𝑿𝜷, 𝜎 𝑰 )       𝑖𝑓   𝑦∗ ≤ 𝑦 ,
 

2. The full conditional posterior distribution of 𝜷 is:  
𝜋(𝜷|𝒚 

∗, 𝑿, 𝜎 , 𝑧) ∝ 𝜋(𝒚 
∗|𝑿, 𝜷, 𝜎 ) 𝜋(𝜷|𝑧, 𝜎 , 𝜆) 

                           ∝ 𝑒𝑥𝑝 − (𝒚∗ − 𝑿𝜷) (𝒚∗ − 𝑿𝜷) ∏ 𝐼 𝛽 <
 

  

                ∝ 𝑒𝑥𝑝 − 𝜷 − 𝜷 𝑿 𝑿 𝜷 − 𝜷 ∏ 𝐼 < 𝛽 <
 

.  

Hence,  

𝜷|𝒚, 𝑿, 𝑧, 𝜆, 𝜎  ~ 𝑁 (𝜷 , 𝜎 (𝑿 𝑿) ) ∏ 𝐼 < 𝛽 <
 

  

3. The full conditional posterior distribution of 𝜎  is: 
𝜋(𝜎 |𝒚 

∗, 𝑿, 𝜷) ∝ 𝜋(𝒚 
∗|𝑿, 𝜷, 𝜎 ) 𝜋(𝜎 ) 𝜋(𝜷|𝜎 , 𝜆, 𝑧) 

                         ∝ 𝑒𝑥𝑝 − (𝒚∗ − 𝑿𝜷) (𝒚∗ − 𝑿𝜷) (𝜎 ) 𝑒   

                              (𝜎 )  ∏ 𝐼 𝑧 >   

                          ∝ (𝜎 ) 𝑒𝑥𝑝 − (𝒚∗ − 𝑿𝜷) (𝒚∗ − 𝑿𝜷)  𝑒   

                                   𝐼 𝜎 > 𝑀𝑎𝑥   
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                          ∝ (𝜎 )  𝑒𝑥𝑝 − (𝒚∗ − 𝑿𝜷) (𝒚∗ − 𝑿𝜷) +   

                              𝐼 𝜎 > 𝑀𝑎𝑥 .   

Therefore,  

𝜎 |𝒚, 𝑿, 𝜷, 𝑧, 𝜆 ~ 𝐼𝑛𝑣𝑒𝑟𝑠𝑒 − 𝐺𝑎𝑚𝑚𝑎
 𝑛 

2
+ 𝑞 + 𝑘,

(𝒚∗ − 𝑿𝜷) (𝒚∗ − 𝑿𝜷)

2 + 𝜃
 

4. The full conditional posterior distribution of 𝑧 is:  
𝜋(𝑧|𝜷, 𝜆, 𝜎 ) ∝ 𝜋(𝑧) 𝜋(𝜷|𝑧, 𝜆, 𝜎 ) 
                      

                          ∝ 𝑒 𝐼 𝑧 >
𝜆 𝛽

𝜎
. 

Therefore,  

𝑧 ~ 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙  𝐼 𝑧 >
𝜆 𝛽

𝜎
 

5. The full conditional posterior distribution of 𝜆 is:  
𝜋(𝜆|𝜷) ∝ 𝜋(𝜷|𝜆) 𝜋(𝜆) 

               ∝  𝜆  𝑒  ∏ 𝐼 𝑧 >   

               ∝ 𝜆  𝑒  ∏ 𝐼 𝜆 < .  

Therefore,  

𝜆 ~ 𝐺𝑎𝑚𝑚𝑎 (𝑘 + 𝑐, 𝑑) 𝐼 𝜆 <
𝑧 𝜎

𝛽
 

4. Simulation Study and Real Data 
4.1 Simulation Study 
In this section, we demonstrate the prediction accuracy of the methods; linear left censored 
regression (Tobit), Bayesian lasso left censored regression (BLLCR), the new Bayesian lasso left 
censored regression (NBLLCR), Bayesian lasso left censored regression using scale mixture 
uniform (BLLCRsmu), and the new Bayesian lasso left censored regression using scale mixture 
uniform (NBLLCRsmu). The outcome variable is centered and the covariates are standardized to 
have 0 means and unit variances before applying the above methods. For prediction accuracy, we 
evaluate the median of mean squared errors (MMSE) for the simulated studies based on 100 
replications. 
4.1.1 Example 1 (Left censored with sparse case)  
In this example, we generate data from the correct model (Alhamzawi 
and Ali, 2020) 



 
 
 

4425 
 

Ann. For. Res. 66(1): 4420-4430,  2023 
ISSN: 18448135, 20652445 

ANNALS OF FOREST RESEARCH 
www.e-afr.org 

 

© ICAS 2023 

𝑦 = 𝑚𝑎𝑥{0, 𝑦  
∗}, 

                                   𝑦∗ = 𝒙𝒊𝜷 + 𝜀 , 

𝑖 = 1, … , 𝑛,  

𝜀  ~ 𝑁(0, 𝜎 )   
We set 𝛽 × = (6,1,0,0,3,0,0,0,0,0)′ and 𝜎 = {1,3,5}. For each simulation study, we generate a 
training set (𝑛 ) with 𝑛 = {100,150,200} observations and a testing set with 200 observations. 
The covariates are simulated from the multivariate normal distribution with mean zero, variance 

1, and pairwise correlations between 𝑥  and 𝑥  equal to 0.5| | ∀ 𝑖 ≠ 𝑗. 

The results are listed in Table 1. The results show that the new Bayesian lasso left censored 
regression (NBLLCR) performs very well compared to other methods in the comparison. It has the 
smallest MMSE in 5 out of 9 experimental results. The Bayesian lasso left censored regression 
using scale mixture uniform (BLLCRsmu) also performs well compared to other methods in the 
comparison. It has the smallest MMSE in 3 out of 9 experimental results. 

Table 1: Median mean squared error (MMSE) and their associated standard deviations (SD) are 
listed in the parentheses for Example 1. All results are averaged over 100 replications. 

Convergence of the corresponding our Gibbs sampler methods was assessed by trace plots of the 
simulated draws. The trace plots Figures 1  – 4 shows that our methods converge very fast. 

(𝑛 , 𝑛 , 𝜎 ) Tobit BLLCR NBLLCR BLLCRsmu NBLLCRsmu 

(100, 200, 1) 
(100, 200, 9) 
(100, 200, 
25) 

0.2102 
(0.0879) 
1.4887 
(0.7463) 
3.9987 
(2.2121) 

0.4866 
(0.2924) 
1.6287 
(0.6630) 
4.5781 
(2.3237) 

0.1684 
(0.0944) 
0.8467 
(0.4599) 
2.8790 
(1.7789) 

0.1770 
(0.0746) 
1.0394 
(0.5372) 
2.9307 
(1.6958) 

0.1783 
(0.1019) 
0.8519 
(0.4420) 
2.8593 
(1.7673) 

(150, 200, 1) 
(150, 200, 9) 
(150, 200, 
25) 

0.1349 
(0.0696) 
0.8980 
(0.3243) 
2.6600 
(1.2711) 

0.2422 
(0.1171) 
1.2659 
(0.5821) 
2.5127 
(1.5803) 

0.1247 
(0.0754) 
0.6485 
(0.2042) 
2.0214 
(1.1362) 

0.1221 
(0.0642) 
0.7319 
(0.2369) 
1.9633 
(1.1111) 

0.1242 
(0.0772) 
0.6511 
(0.2076) 
2.0057 
(1.0926) 

(200, 200, 1) 
(200, 200, 9) 
(200, 200, 
25) 

0.1111 
(0.0661) 
0.7527 
(0.3544) 
1.7358 
(0.8284) 

0.1411 
(0.0883) 
0.7273 
(0.3896) 
1.9657 
(0.9514) 

0.0857 
(0.0624) 
0.5378 
(0.2738) 
1.3485 
(0.6781) 

0.1009 
(0.0631) 
0.6142 
(0.3105) 
1.3257 
(0.6370) 

0.0858 
(0.0605) 
0.5396 
(0.2784) 
1.3498 
(0.6932) 
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Figure 1: Trace plots of parameters in Simulation 1 using BLLCR method. 

 

Figure 2: Trace plots of parameters in Simulation 1 using NBLLCR method. 
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Figure 3: Trace plots of parameters in Simulation 1 using BLLCR method. 

 

Figure 4: Trace plots of parameters in Simulation 1 using NBLLCRsmu method. 

4.1.2 Example 2 (Left censored with dense case) 
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Table 2: Median mean squared error (MMSE) and their associated standard deviations (SD) are 
listed in the parentheses for Example 2. All results are averaged over 100 replications. 

The results are lists in Table 2. The results show that The Bayesian lasso left censored regression 
using scale mixture uniform (BLLCRsmu) performs very well compared to other methods in the 
comparison. It has the smallest MMSE in 6 out of 9 experimental results. 
4.1.3 Example 3 (Left censored with very sparse case) 
Here we set 𝛽 × = (6,0,0,0,0,0,0,0,0,0)′, leaving other setups exactly the same as in Example 
1. The results are lists in Table 3. The results show that the new 
Table 3: Median mean squared error (MMSE) and their associated standard deviations (SD) are 
listed in the parentheses for Example 3. All results are averaged over 100 replications. 

(𝑛 , 𝑛 , 𝜎 ) Tobit BLLCR NBLLCR BLLCRsmu NBLLCRsmu 

(100, 200, 1) 
(100, 200, 9) 
(100, 200, 
25) 

0.1771 
(0.0762) 
1.4155 
(0.6258) 
5.3689 
(2.9968) 

1.1996 
(0.2868) 
3.7530 
(1.1582) 
6.0693 
(2.3489) 

0.3049 
(0.1845) 
1.3331 
(0.8354) 
4.4063 
(2.0186) 

0.1740 
(0.0798) 
1.2620 
(0.6742) 
3.9529 
(1.9710) 

0.3089 
(0.1838) 
1.3643 
(0.8703) 
4.4076 
(2.1573) 

(150, 200, 1) 
(150, 200, 9) 
(150, 200, 
25) 

0.1340 
(0.0405) 
1.0950 
(0.6451) 
2.7741 
(1.0659) 

0.6167 
(0.1878) 
2.4081 
(0.5277) 
5.1234 
(2.5299) 

0.2550 
(0.1122) 
0.9955 
(0.4794) 
2.6020 
(0.9744) 

0.1352 
(0.0417) 
0.9890 
(0.5311) 
2.4885 
(0.9346) 

0.2488 
(0.1029) 
0.9998 
(0.4886) 
2.6466 
(0.9541) 

(200, 200, 1) 
(200, 200, 9) 
(200, 200, 
25) 

0.0963 
(0.0451) 
0.6958 
(0.3017) 
2.0036 
(0.8296) 

0.2967 
(0.1102) 
1.9084 
(0.4891) 
3.3814 
(1.4898) 

0.1552 
(0.0724) 
0.7644 
(0.3170) 
1.9139 
(0.7927) 

0.0976 
(0.0469) 
0.7009 
(0.3045) 
1.7670 
(0.7850) 

0.1539 
(0.0669) 
0.7687 
(0.3341) 
1.9025 
(0.7857) 

(𝑛 , 𝑛 , 𝜎 ) Tobit BLLCR NBLLCR BLLCRsmu NBLLCRsmu 

(100, 200, 1) 
(150, 200, 9) 
(200, 200, 
25) 

0.2151 
(0.0782) 
1.4375 
(0.8445) 
4.5167 
(2.0976) 

0.1979 
(0.1410) 
1.7693 
(0.4738) 
2.2472 
(1.8837) 

0.0923 
(0.0482) 
0.7129 
(0.4676) 
3.0784 
(1.4806) 

0.1652 
(0.0560) 
0.8499 
(0.5963) 
2.4561 
(1.3518) 

0.0935 
(0.0487) 
0.7191 
(0.4700) 
3.0258 
(1.4649) 

(100, 200, 1) 
(150, 200, 9) 

0.1026 
(0.0564) 

0.0919 
(0.0750) 

0.0435 
(0.0324) 

0.0813 
(0.0483) 

0.0437 
(0.0337) 
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New Bayesian lasso left censored regression (NBLLCR) performs very well compared to other 
methods in the comparison. It has the smallest MMSE in 6 out of 9 experimental results. The 
Bayesian lasso left censored regression (BLLCR) also performs well compared to other methods 
in the comparison. It has the smallest MMSE in 3 out of 9 experimental results. 

4.2 Real Data 
In this section, we demonstrate the performance of the methods with extramarital affairs 

data. A detailed discussion of this data set can be found in Chernozhukov and Hong (2011), and 
this data set is available in the R package AER. The original data has 601 observations and on 9 
variables. We use a random subsample of this dataset which has 100 observations The dependent 
variable is affairs (the number of extramarital sexual intercourse during the past year). The other 
eight independent variables include: gender (𝑥 ), age (𝑥 ), years (𝑥 ), children (𝑥 ), religiousness 
(𝑥 ), education (𝑥 ), occupation (𝑥 ), and rating (𝑥 ).   

The results are listed in Table 4, The results show that the new Bayesian lasso left censored 
regression (NBLLCR) performs very well compared to other methods in the comparison. 
Table 4: Mean squared error (MSE) for the affairs data. 

 
5. Conclusions 

The median of mean squared errors (MMSE) was used to know prediction accuracy, and 
by applying the Markov Chain Monte Carlo (MCMC) method in the simulation and real data, the 
study found that the estimator of the new Bayesian lasso left censored regression (NBLLCR) 
method is the best compared to other methods, based on the value of mean squared error (MSE). 
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(200, 200, 
25) 

0.8673 
(0.3041) 
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