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Abstract 
Regression analyses concerns in the explanation and the prediction of the relation between the 
response variable and a set of predictor variables. The explanation of the regression model obtained 
via variable selection procedure, while the prediction accuracy of the regression model of the 
obtained by trading off the bias and the variance of the estimator. This paper discuss the employing 
the Bayesian adaptive lasso penalized function in quantile regression. The reciprocal adaptive lasso 
works as variable selection procedure. We employed the scale mixture of normals and the scale 
mixture of uniforms to develop the Gibbs sampler algorithm. Full conditional posterior 
distributions have derived based of the hierarchical prior model. Two simulation scenarios and real 
data analysis conducted to test the performance of the two proposed Bayesian adaptive lasso 
methods in quantile regression.  
Keywords: Reciprocal adaptive lasso, Gibbs sampler algorithm, prior distributions, posterior 
distributions. 

Introduction 

           Quantile regression analysis one of the most popular regression models in the statistical 
theory, it is a generalized form of the linear regression model. Also, quantile regression model can 
be viewed as method that detect more than one relationships (estimated models ) between response 
variable and predictor variables. So, quantile regression model is a robust model. Where the 
coefficients regression estimates are not affected by the outliers unlike the estimates of the least 
squares method. Many of data analysts are not interested in the mean regression model estimating 
of relationship of the response variable and the predictor variables, or sometimes the assumptions 
of the mean regression violated; such as the normality of the error term, Chatterjee and Hadi 
(2013). Consequently, if the error term distribution is not specified or the violation of mean 
regression assumptions, the modeling with other quantities ( quantiles ) might be more wanted in 
specifying the exact model.  Koenker and Bassett in 1978 introduced the regression quantiles. 
Marasinghe (2014) stated that the quantile regression estimators are robust and does not require 
the condition that imposes on the distribution of the error term. In 1987 Koenker and  Dorey  
modified and developed an efficient computing algorithm for estimating the quantile regression 
parameter estimates. Tibshirani (1996) introduced the lasso method as variable selection procedure 
with frequents estimation methods. In 1999 Koenker and Machado developed a goodness of fit 
test for quantile regression model by using the coefficient of determination. In 2001 Yu and 
Moyeed discussed using of asymmetric Laplace distribution as likelihood function in Bayesian 
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quantile regression model. In 2006 Zou proposed new penalized function that adds to the residual 
sum of squares and named adaptive lasso. In 2007 Yu and Stander discussed the Bayesian 
reference for Tobit quantile regression. In 2008 Li and Zhu studied the variable selection in lasso 
quantile regression. In 2010 Leng introduced the Bayesian adaptive lasso assuming that tuning 
parameter takes different values. Kozumi and Kobayashi (2011) proposed new Gibbs sampler 
algorithm in Bayesian quantile regression assuming tht the asymmetric Laplace distribution can 
be represents as scale mixture of normal-  exponential density. In 2017 Alhusseini introduced the 
variable selection in Bayesian lasso quantile regression by assuming that scale mixture unifroms. 
In 2020 Almusaedi and Flaih studied the Bayesian parameter estimation of the quantile regression 
based on asymmetric Laplace distribution. In 2021 Almusaedi and Flaih Studied the Penalized 
Bayesian Elastic Net Quantile Regression. In 2020, mallick et al. proposed two reciprocal lasso 
regression models based on the scale mixture of normal and the scale mixture of uniform. In 2021, 
Alhamzawi and mallick introduced the reciprocal lasso quantile regression in Bayesian estimation. 
This paper have new simple and efficient Gibbs sampler algorithm to generate the samples from 
the target posterior distributions. The simulation results showed that the proposed methods are 
comparable with other methods. 
 
Bayesian Reciprocal Adaptive Lasso Quantile Regression  
Regularization methods are usually used to overcome the problem of ill-conditioned matrix 𝑿 
(𝑋்𝑋 is not inverted) and/or the problem of many predictor variables in the regression model. 
Lately, high-dimensional shrinkage methods and variable selection procedure have been of great 
importance. In this section, we proposed a new Gibbs Sampler algorithms based on new 
hierarchical model for Bayesian reciprocal adaptive lasso quantile regression (BrALqr). This 
Bayesian model has developed through using the proposed scale mixtures of Mallick et al. (2020) 
that represents the prior distribution of interested parameters as the inverse Laplace distribution. 
The inverse Laplace distribution takes the following prior form,  

   𝜋(𝛽) =  ෑ
𝜆

2𝛽௝
ଶ

௞

௝ୀଵ
𝑒

ି 
ఒ

หఉೕห       𝐼൫𝛽௝ ≠ 0൯ ⋯ ⋯ ⋯ (1) 

Mallick et al (2020) proved that the Bayesian reciprocal lasso method is more efficient in 
computation algorithms that provides efficient convergence in implementing to generates samples 
from the posterior distribution of the interested parameters, for more details check out Song (2014) 
and Shine et al. (2018).  

   ℎ(𝛽) =  armin
ఉ

{ 𝑙𝑜𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 + ෍
𝜆௝

ห𝛽௝ห
}

௣

௝ୀଵ
 𝐼൫𝛽௝ ≠ 0൯ 

We will employ the Bayesian reciprocal adaptive Lasso quantile regression using scale mixture of 
uniforms referred to as (BRALQRU) and Bayesian reciprocal adaptive Lasso quantile regression 
using scale mixture of normals referred to as (BRALQRN), Alhamzawi and  Mallick  (2020). We 
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can rewrite the Bayesian minimization problem of the reciprocal lasso quantile regression (2.7) as 
follows: 

min
ఉ

 ෍  

௡

௜ୀଵ

𝜌ఛ(𝑦௜ − 𝑥௜
ᇱ𝛽) + ෍  

௣

௝ୀଵ

𝜆௝

ห𝛽௝ห
𝐼൛𝛽௝ ≠ 0ൟ.             

 
Hierarchical Priors model of the scale mixture of Uniform 
Alhamzawi and Mallick (2020) introduced the parameter estimation in Bayesian reciprocal 
adaptive Lasso quantile regression by using the scale mixture of uniforms as representation for the 
prior distribution (1), 

 

𝜆௝

2𝛽௝
ଶ 𝑒

ି
ఒೕ

หఉೕห = න  
௨ೕவ

ଵ

หఉೕห

1

2𝑢௝𝛽௝
ଶ

𝜆௝
ଶ

Γ(2)
𝑢௝

ଶିଵ𝑒ିఒೕ௨ೕ𝑑𝑢௝ , 𝜆௝ > 0    …     (2) 

The hierarchical model of BRALQRU based on (1) and (2) defined as follows  

𝑦௜ = 𝑥௜
்𝛽ఛ + 𝜃ఛ𝑣௜ + 𝛼ఛඥ𝜎𝑣௜𝑧௜, 

𝑦௜|𝑥, 𝛽, 𝜎, 𝑣 ~ ∏  ௡
௜ୀଵ 𝑁(𝑥௜

்𝛽ఛ + 𝜃ఛ𝑣௜  , 𝛼ఛ
ଶ𝜎𝑣௜), 

𝑣௡×ଵ ∣ 𝜎 ∼ ෑ  

௡

௜ୀଵ

 𝐸𝑥𝑝 (𝜎), 

𝛽௣×ଵ ∣ 𝑢 ∼ ෑ  

௣

௝ୀଵ

 
1

 Uniform ൫−𝑢௝ , 𝑢௝൯
   , … (3) 

𝑢௣×ଵ ∣ 𝜆௝ ∼ ෑ  

௣

௝ୀଵ

 𝐺𝑎𝑚𝑚𝑎(2, 𝜆௝), 

𝜎 ∼ 𝜎ି௔ିଵex p ൬−
𝑏

𝜎
൰, 

𝜆௝ ∼ 𝜆௝
௖ିଵ exp൫−𝑑𝜆௝൯. 

Posterior Distributions of BRALQRU  

The hierarchical model (3) can be employed with a Gibbs sampler algorithm. Gibbs sampling 
algorithm is a Markov Chain Monte Carlo (MCMC) tool that draws iteratively samples from the 
conditional posterior distribution of a specific variable conditioned on all other variables. The 
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hierarchical model (3) utilized in such a way that we can formulate the full conditional posterior 
distributions that easy to simulate from.  

1- The conditional distribution of 𝑦 is defined by : 

𝑦௜|𝑥, 𝛽, 𝜎, 𝑣 ~ ∏  ௡
௜ୀଵ 𝑁(𝑥௜

்𝛽ఛ + 𝜃ఛ𝑣௜  , 𝛼ఛ
ଶ𝜎𝑣௜). 

 

2- The full conditional posterior distribution of 𝛽 is defined by: 

𝛽 ∣ 𝑦, 𝑋, 𝑣, 𝑢, 𝜆, 𝜎 ∼ 𝑁௣൫𝛽̂, 2𝜎(𝑋ᇱ𝑉ିଵ𝑋)ିଵ൯ ෑ  

௣

௝ୀଵ

 𝐼 ቊห𝛽௝ห >
1

𝑢௝
ቋ. 

Where   𝛽መ = (𝑋ᇱ𝑉ିଵ𝑋)ିଵ𝑋ᇱ𝑉ିଵ(𝑦 − 𝜃𝑣), and 𝑉 = 𝑑𝑖𝑎𝑔(𝑣ଵ, … , 𝑣௡). 

3- The full conditional posterior distribution of 𝑣௜ is defined by: 

𝑣௜ ∣ 𝑦, 𝑋, 𝛽, 𝜎, 𝑢, 𝜆 ∼  GIG ቆ
1

2
,
(𝑦௜ − 𝑥௜

ᇱ𝛽)ଶ

2𝜎
,

1

2𝜎
ቇ 

Where, GIG is generalized inverse Gaussian.  

4- The full conditional posterior distribution of 𝜎 is defined by: 

𝜎 ∣ 𝑦, 𝑋, 𝛽, 𝑣, 𝑢, 𝜆 ∼ IG ൬𝑎 +
3𝑛

2
, 𝑏 +

1

2
(𝑦 − 𝑋𝛽 − 𝜃𝑣)ᇱ𝑉ିଵ(𝑦 − 𝑋𝛽 − 𝜃𝑣)൰.  

Where, IG is inverse gamma.  

5- The full conditional posterior distribution of 𝑢 is defined by: 

𝑢 ∣ 𝑦, 𝑋, 𝛽, 𝑣, 𝜆, 𝜎 ∼ ෑ  

௣

௝ୀଵ

Exp(𝜆) 𝐼 ቊ𝑢௝ >
1

ห𝛽௝ห
ቋ. 

6- The full conditional posterior distribution of 𝜆 is defined by: 

𝜆 ∣ 𝑦, 𝑋, 𝛽, 𝑣, 𝑢, 𝜎 ∼ Gamma ቌ𝑐 + 2𝑝, 𝑑 + ෍  

௣

௝ୀଵ

1

ห𝛽௝ห
ቍ. 

Hierarchical Priors model based on the scale mixture of Normal 
Mallick et al. (2020), Alhamzawi and Mallick (2020) introduced the following proposition based 
on the work of Armagan et al. (2013): 
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𝛽~𝑁(0, 𝛾)𝐼{|𝛽| > 𝜂}, 𝛾~ exp(𝜁ଶ 2⁄ ),  𝜁~ exp(𝜂), and 𝜂~𝐼𝑛𝑣𝑒𝑟𝑠𝑒 𝐺𝑎𝑚𝑚𝑎 (2, 𝜆), then 𝛽 
distributed according to inverse Laplace distribution with parameter 𝜆. 

From this proposition, the inverse Laplace distribution can be represents as scale mixture of 
truncated normal. Now based on the above proposition, minimization problem (2), and the quantile 
regression model , the hierarchical prior model defines as follows: 

𝑦௜|𝑥, 𝛽, 𝜎, 𝑣 ~ ∏  ௡
௜ୀଵ 𝑁(𝑥௜

்𝛽ఛ + 𝜃ఛ𝑣௜  , 𝛼ఛ
ଶ𝜎𝑣௜). 

𝛽௣×ଵ ∣ 𝛾, 𝑢 ∼ ෑ  

௣

௝ୀଵ

𝑁൫0, 𝛾௝
ଶ൯𝐼 ቊห𝛽௝ห >

1

𝑢௝
ቋ 

𝛾௣×ଵ ∣ 𝜁 ∼ ෑ  

௣

௝ୀଵ

Ex p൫𝜁௝
ଶ൯ 

𝜁௣×ଵ ∣ 𝑢 ∼ ∏  
௣
௝ୀଵ Ex p ൬

ଵ

௨ೕ
൰ , Where 𝑢 =

ଵ

ఎ
 

𝑢௣×ଵ ∣ 𝜆 ∼ ∏  
௣
௞ୀଵ Gamma (2, 𝜆)          … (4) 

𝜎 ∼ 𝜎ି௔ିଵex p ൬−
𝑏

𝜎
൰ 

𝜆 ∼ 𝜆௖ିଵexp (−𝑑𝜆) 

BRALQRN sampling computation: 

Calculation of MCMC iterations for drawing randomly samples from the full conditional posterior 
distributions can be done by the following algorithm steps: 

1- Sampling  𝑦௜: this can be done by drawing samples from truncated normal with mean 
𝑥௜

்𝛽ఛ + 𝜃ఛ𝑣௜   and variance 𝛼ఛ
ଶ𝜎𝑣௜. 

 
2- Sampling 𝑣ିଵ: this can be done by drawing samples from inverse Gaussian: 

  𝑣ିଵ\ . ∼ ∏  ௡
௜ୀଵ Inverse − Gaussian ൬

ଵ

ଶ
,

ଵ

ห୷౟ି୶౟
ᇲஒห

,
ଵ

ଶ஢
൰ 

 
3- Sampling 𝑢௜: this can be done by drawing samples from  

   𝑢\. ∼ ∏  
௣
௞ୀଵ Exponential(𝜆)𝐼 ቄ𝑢௞ >

ଵ

|ఉೖ|
ቅ 

 
4- Sampling 𝜏ିଵ: this can be done by drawing samples from inverse Gaussian  𝜏ିଵ\ . ∼

∏  
௣
௞ୀଵ Inverse − Gaussian ቆ

ଵ

ଶ
, ට

఍ೖ
మ

ఉೖ
మ , 𝜁௞

ଶቇ. 

5- Sampling 𝜁: this can be done by drawing samples from gamma distribution 𝜁\ . ∼

∏  
௣
௞ୀଵ Gamma ቆ2, ቀ|𝛽௞| +

ଵ

௨ೖ
ቁቇ. 
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6- Sampling 𝛽: this can be done by drawing samples from truncated multivariate normal 
distribution: 

𝑁௉((𝑋ᇱ𝛺ିଵ𝑋 + 𝑇ିଵ)ିଵ𝑋ᇱ𝛺ିଵ(y − θv), (𝑋ᇱ𝛺ିଵ𝑋 + 𝑇ିଵ)ିଵ) ∏  
௣
௞ୀଵ 𝐼 ቄ|𝛽௞| >

ଵ

௨ೖ
ቅ. 

 
7- Sampling 𝜎: this can be done by drawing samples from inverse gamma distribution 

 Inverse − Gamma ൬a +
3𝑛

2
, 𝑏,

1

4
(𝑦 − 𝑋𝛽 − 𝜃𝑣)ᇱ𝑉ିଵ(𝑦 − 𝑋𝛽 − 𝜃𝑣)൰   

8- Sampling 𝜆: this can be done by drawing samples from gamma distribution 

Gamm a ቀ𝑐 + 2𝑝, 𝑑 + ∑  
௣
௞ୀଵ

ଵ

|ఉೖ|
ቁ. 

 

Simulation Study Analysis 
simulation studies and real data analysis have conducted to illustrate the performance of the 
proposed approaches (Bayesian reciprocal adaptive Lasso quantile regression using scale mixture 
of uniforms referred to as 'BrALqr.U' and Bayesian reciprocal adaptive Lasso quantile regression 
using scale mixture of normals referred to as 'BrALqr.N' ). The proposed approaches are compared 
with some existing Bayesian (Alhamzawi et al. (2011), Alhamzawi and Ali (2018), Alhamzawi 
and Ali (2020)  and Alhamzawi (2021) ) and non-Bayesian approaches. The approaches in this 
comparison include: 

 Bayesian reciprocal adaptive Lasso quantile regression using scale mixture of uniforms 
(BrALqr.U). 

 Bayesian reciprocal adaptive Lasso quantile regression using scale mixture of uniforms 
(BrALqr.N). 

 Bayesian reciprocal Lasso quantile regression using scale mixture of uniforms (BrLqr.N). 

  Bayesian Lasso quantile regression (BLqr). 

 Bayesian bridge quantile regression (BBqr). 

 Lasso regression (lasso). 

 Quantile regression (qr). 

 Quantile regression with L1 penalty (qrL1). 
 
We consider two simulation studies:  

 Simulation study 1 (very sparse case): 𝛽 = (4,0,0,0,0,0,0,0,0,0). 

 Simulation study 2 (inconsistent regardless of the sample size (Zou, 2006):  𝛽 =

(5.6,5.6,5.6,0). 
 
 
The data in the simulation examples were generated by 

𝑦௜ = 𝑋௜
ᇱ𝛽 + 𝑒௜ , 𝑖 = 1,2, … , 𝑛 
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We setup the error distribution 𝑒௜  so that the q-th quantile equal to 0. Following Li, et. al 
(2010), we consider four error distributions:   

  𝑁(𝜇, 9), we setup 𝜇 so that the qth quantile equal to zero. 

 0.1𝑁(𝜇, 1) + 0.9 𝑁(𝜇, 5), ,  we setup 𝜇 so that the qth quantile equal to zero. 

 Laplace distribution, Laplace (𝜇; b = 3), we setup 𝜇  so that the qth quantile equal to zero. 

 Mixture of two Laplace distribution, 0.1 Laplace (𝜇; b = 1) + 0:9 Laplace (𝜇; b =√5), we 
setup 𝜇 so that the qth quantile equal to zero. (Li et al. ,2010).  

For the first three simulations (Simulation study 1, Simulation study 4), the rows of the design 
matrix X were generated from 𝑁(0, ∑) ,where ∑ has an autoregressive correlated matrix, where 

∑௜௝ = 0.5|௜ି௝| for all 1 ≤  𝑖 ≤  𝑗 ≤  𝑝. The data for Simulation 4 is following the setup of Zou 

(2006), where the 𝑐𝑜𝑟൫𝑥௜ , 𝑥௝൯ = −0.39  for i < j < 4 and  𝑐𝑜𝑟(𝑥ଵ, 𝑥ସ) = 0.23 , i < 4 . In each 

simulation study, we run 100 replications. For each replication, we simulate 20 observations as a 
training set and 200 observations as a testing set. We run the Bayesian algorithms for 13000 
iterations discarding the first 1000 iteration as a burn-in. Approaches are compared using median 
of mean absolute deviation (MMAD): 

MMAE = Median (mean ห𝑥௜
்𝛽௣௥௘ௗ௜௖௧௘ௗ − 𝑥௜

்𝛽௧௥௨௘  ห) 

where me is the median which is taken over 100 simulations. The results of the simulations are 
listed in Tables 1, and 2. We can see that our proposed approaches (BrALqr.U and BrALqr.N) 
perform well compared with the other existing approaches. For all the simulated cases, 
convergence of the corresponding MCMC Gibbs sampler was evaluated by trace plots and 
histograms of the simulated samples. Trace plot is a convergence diagnoses technique, commonly 
is using to indicate if the generated samples from MCMC for the posterior distribution of 
parameters convergence to stationary distribution. Moreover, the histograms are used for checking 
the distribution class of the interested variable.  
Table 1: MMADs and SD for Simulation study 1. In the parentheses are standard deviations of the 
MMADs. 
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In Table 1, we can see that the proposed method BrALqr.U performs better than the other 
approaches in 4 out 12 cases. 
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Figure 1: Trace plots based on posterior samples for Simulation 1 when the error is normal and q 

= 0.9 using BrALqr.U and BrALqr.N methods. 
 
The above  figure (1) shows that the trace plots explains no flat bits and that MCMC algorithm 
suffer no slow mixing which indicates that the proposed methods have good mixing properties. 
Figure (6) illustrated the distributions of the parameter estimates βଵ − βଵ଴ through the histograms 
and it is clearly that the distribution of the parameters follows the normal distribution. 
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Figure 2: Histograms based on posterior samples for Simulation 1 when the error is normal and q 
= 0.9 using BrALqr.U and BrALqr.N methods.  
Table 2: MMADs and SD for Simulation study 2. In the parentheses are standard deviations of the 
MMADs. 
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In Table 2, we can see that the proposed method BrALqr.N performs better than the other 
approaches in 6 out 12 cases while the proposed method BrALqr.U performs better than the other 
approaches in 4 out 12 cases. 
 
Real Data Analysis 
The data was obtained from Al-Kema medical laboratory, which is a laboratory licensed by the 
Ministry of Health, located in Al-Diwaniyah Governorate. The phenomenon under study is a 
medical phenomenon in which the dependent variable was (y) and 17 explanatory variables as 
shown in the table below. The sample size under study was (114) single and after data collection 
it was dealt with in a standard format to ensure data purification because the units of measurement 
for the variables are different. We randomly divide the data into a training set with 30 observations 
and a testing set with 83 observations. Model fitting is carried out on the training set observations 
and performance is calculated with the mean square error on the testing set, table (3) shows the 
results which indicates that the proposed method perform better than the other approaches.  
 

Variables 
description 

Abbreviation  Symbol 

Seram cholesterol s. cholesterol Y  
 

Random Blood 
sugar 

R.B.Sugar X1  

Blood urea B.Urea X2  

serum creatinine S.creatinine X3  

low density 
Lipoproten 

LDL X4  

High densite 
Lipoproten 

HDL X5  

Calcium Ca++ X6  

High ceeL Test HCT X7  

Heamglobin Hb X8  

Packt cell valume PCV X9  

Weate Blood cell WBC X10  

Earthrocet R eate E.S.R X11  

  Blood group X12 
 

 
PLTelate PLT X13  

Procalci PCT X14  

mean platelet 
volume 

MPV X15  
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  Weight X16 
 

 

  Age X17 
 

 
Table 3: The case study variables 

 
Table 4:  Prediction errors with their standard deviations for the real data (The bold numbers 
correspond to the smallest MSE in each category.) 

 
Conclusions 

The violation of the least squares methods motivates the researchers to search about more valuable 
parameters estimation methods, the regularization methods that employed the penalized function 
have been widely popular method in regression analysis, such as lasso, adaptive lasso, elastic 
net,…etc. The reciprocal adaptive lasso is another regularization method. New hierarchical prior 
models have introduced with the scale mixture is of normls and the scale mixture of uniforms. 
Based on the hierarchical prior models the posterior densities have developed, also Gibbs sampler 
algorithm have implemented for the necessary computations. A comparison between the two 
proposed models have conducted and to assess the quality of the coefficients estimates through 
simulation scenarios and real data analysis. The criterion that is named median mean absolute 
deviation and its standard deviation has used to assess the quality of the parameter estimation 
methods in simulation results, but the mean square error and its standard error criterion has used 
to assess the quality of the parameter estimates in real data analysis. Results in both of the 
simulation scenarios and real data analysis show that the proposed methods are comparable to the 
other methods. 
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