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Abstract

Regression analyses concerns in the explanation and the prediction of the relation between the
response variable and a set of predictor variables. The explanation of the regression model obtained
via variable selection procedure, while the prediction accuracy of the regression model of the
obtained by trading off the bias and the variance of the estimator. This paper discuss the employing
the Bayesian adaptive lasso penalized function in quantile regression. The reciprocal adaptive lasso
works as variable selection procedure. We employed the scale mixture of normals and the scale
mixture of uniforms to develop the Gibbs sampler algorithm. Full conditional posterior
distributions have derived based of the hierarchical prior model. Two simulation scenarios and real
data analysis conducted to test the performance of the two proposed Bayesian adaptive lasso
methods in quantile regression.

Keywords: Reciprocal adaptive lasso, Gibbs sampler algorithm, prior distributions, posterior
distributions.

Introduction

Quantile regression analysis one of the most popular regression models in the statistical
theory, it is a generalized form of the linear regression model. Also, quantile regression model can
be viewed as method that detect more than one relationships (estimated models ) between response
variable and predictor variables. So, quantile regression model is a robust model. Where the
coefficients regression estimates are not affected by the outliers unlike the estimates of the least
squares method. Many of data analysts are not interested in the mean regression model estimating
of relationship of the response variable and the predictor variables, or sometimes the assumptions
of the mean regression violated; such as the normality of the error term, Chatterjee and Hadi
(2013). Consequently, if the error term distribution is not specified or the violation of mean
regression assumptions, the modeling with other quantities ( quantiles ) might be more wanted in
specifying the exact model. Koenker and Bassett in 1978 introduced the regression quantiles.
Marasinghe (2014) stated that the quantile regression estimators are robust and does not require
the condition that imposes on the distribution of the error term. In 1987 Koenker and Dorey
modified and developed an efficient computing algorithm for estimating the quantile regression
parameter estimates. Tibshirani (1996) introduced the lasso method as variable selection procedure
with frequents estimation methods. In 1999 Koenker and Machado developed a goodness of fit
test for quantile regression model by using the coefficient of determination. In 2001 Yu and
Moyeed discussed using of asymmetric Laplace distribution as likelihood function in Bayesian
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quantile regression model. In 2006 Zou proposed new penalized function that adds to the residual
sum of squares and named adaptive lasso. In 2007 Yu and Stander discussed the Bayesian
reference for Tobit quantile regression. In 2008 Li and Zhu studied the variable selection in lasso
quantile regression. In 2010 Leng introduced the Bayesian adaptive lasso assuming that tuning
parameter takes different values. Kozumi and Kobayashi (2011) proposed new Gibbs sampler
algorithm in Bayesian quantile regression assuming tht the asymmetric Laplace distribution can
be represents as scale mixture of normal- exponential density. In 2017 Alhusseini introduced the
variable selection in Bayesian lasso quantile regression by assuming that scale mixture unifroms.
In 2020 Almusaedi and Flaih studied the Bayesian parameter estimation of the quantile regression
based on asymmetric Laplace distribution. In 2021 Almusaedi and Flaih Studied the Penalized
Bayesian Elastic Net Quantile Regression. In 2020, mallick et al. proposed two reciprocal lasso
regression models based on the scale mixture of normal and the scale mixture of uniform. In 2021,
Alhamzawi and mallick introduced the reciprocal lasso quantile regression in Bayesian estimation.
This paper have new simple and efficient Gibbs sampler algorithm to generate the samples from
the target posterior distributions. The simulation results showed that the proposed methods are
comparable with other methods.

Bayesian Reciprocal Adaptive Lasso Quantile Regression

Regularization methods are usually used to overcome the problem of ill-conditioned matrix X
(XTX is not inverted) and/or the problem of many predictor variables in the regression model.
Lately, high-dimensional shrinkage methods and variable selection procedure have been of great
importance. In this section, we proposed a new Gibbs Sampler algorithms based on new
hierarchical model for Bayesian reciprocal adaptive lasso quantile regression (BrALqr). This
Bayesian model has developed through using the proposed scale mixtures of Mallick et al. (2020)
that represents the prior distribution of interested parameters as the inverse Laplace distribution.

The inverse Laplace distribution takes the following prior form,
2

k A

n(B) = 1_[ ize 18,1 1(B; # 0) -+ v - 1)
j=1 Zﬂ j

Mallick et al (2020) proved that the Bayesian reciprocal lasso method is more efficient in

computation algorithms that provides efficient convergence in implementing to generates samples

from the posterior distribution of the interested parameters, for more details check out Song (2014)

and Shine et al. (2018).

Y
j=1Bj]

We will employ the Bayesian reciprocal adaptive Lasso quantile regression using scale mixture of
uniforms referred to as (BRALQRU) and Bayesian reciprocal adaptive Lasso quantile regression
using scale mixture of normals referred to as (BRALQRN), Alhamzawi and Mallick (2020). We

h(B) = arrllgnin{ loss function + Z 1 I(,Bj +0)
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can rewrite the Bayesian minimization problem of the reciprocal lasso quantile regression (2.7) as
follows:

mmz pe(yi - xﬁ)+z ] 4 1% 0

Hierarchical Priors model of the scale mixture of Uniform

Alhamzawi and Mallick (2020) introduced the parameter estimation in Bayesian reciprocal
adaptive Lasso quantile regression by using the scale mixture of uniforms as representation for the
prior distribution (1),

A

A T 1 A
—e iz —f Z—u] l”du],l >0 .. (2)
27 |2u]ﬁ] r(2)

The hierarchical model of BRALQRU based on (1) and (2) defined as follows
Vi = xiT:B‘t + 0.v; + az\/ov;z;,

yilx, B,0,v ~Ilizy NCx{ Br + 0:v;, afovy),

n
vl o ~ 1_[ Exp (o),
i=1
p

x1 - 1
Bt lu 1_1[ Uniform (=) ..(3)

]:

uPd | 4 ~ 1_[ Gamma(2, 4;),
j=1

b
o~0oc % lexp (—3),

A ~ A exp(—dA,)).
Posterior Distributions of BRALQRU
The hierarchical model (3) can be employed with a Gibbs sampler algorithm. Gibbs sampling

algorithm is a Markov Chain Monte Carlo (MCMC) tool that draws iteratively samples from the
conditional posterior distribution of a specific variable conditioned on all other variables. The

© ICAS 2023 4637



Ann, For. Res. 66(1): 4635-4648, 2023 ANNALS OF FOREST RESEARCH
ISSN: 18448135, 20652445 www.e-afr.org

hierarchical model (3) utilized in such a way that we can formulate the full conditional posterior
distributions that easy to simulate from.

1- The conditional distribution of y is defined by :

yilx,B,0,v ~ ey N(x{ B + 6,v;, aZovy).
2- The full conditional posterior distribution of f is defined by:

b
A 1
By, X, v,u,A,0~ Ny(B,20(X'V1X)7) ﬂ I {|ﬁj| > u—}.
1 L

J
Where B = X'V X)XV 1(y — 0v), and V = diag(vy, ..., V).
3- The full conditional posterior distribution of v; is defined by:

1 (v —x{B)? 1)

[ ) X: O, U, A~ I Y )
vily.X.pou GG(Z 20 '20
Where, GIG is generalized inverse Gaussian.

4- The full conditional posterior distribution of o is defined by:

3n

1
—,b+ E(y —XB—6v)Vi(y—XB — Hv)).

olyX,Bvuld~I1G (a+ >

Where, IG is inverse gamma.

5- The full conditional posterior distribution of u is defined by:
: 1
ulyX,p,v,A,0~ 1_[ Exp(1) I{uj > —}
j=1 |'8] |

6- The full conditional posterior distribution of A is defined by:

p
1
Aly X, B,v,u,06d ~ Gamma c+2p,d+z— .
~ |gil

Hierarchical Priors model based on the scale mixture of Normal
Mallick et al. (2020), Alhamzawi and Mallick (2020) introduced the following proposition based
on the work of Armagan et al. (2013):
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B~N(O,VI{|B| > n},y~exp((?/2), {~exp(n),and n~Inverse Gamma (2,1), then p
distributed according to inverse Laplace distribution with parameter A.

From this proposition, the inverse Laplace distribution can be represents as scale mixture of
truncated normal. Now based on the above proposition, minimization problem (2), and the quantile
regression model , the hierarchical prior model defines as follows:

yilx, B,0,v ~ iy N(x{ Br + 6:v;, afov;).
P

1
Bl y,u ~ 1_[ N(Oryjz)l {llg]| > u_}

j=1 J
p
g~ | | Exp(?)
j=1

Pl u~ 15, Exp(f),Whereu =%

1
Uj
uP*1 | 2 ~ [1F_; Gamma (2, ) .. (4
o~a % lexp (—2)
o
A~ A"lexp (—dA)
BRALQRN sampling computation:

Calculation of MCMC iterations for drawing randomly samples from the full conditional posterior
distributions can be done by the following algorithm steps:

1- Sampling y;: this can be done by drawing samples from truncated normal with mean

x! B, + 6,v; and variance a?ov;.

2- Sampling v~1: this can be done by drawing samples from inverse Gaussian:

-1\ " _ S
v\, ;=1 Inverse — Gaussian (2, e 20)
3- Sampling u;: this can be done by drawing samples from
~ TP - X
u\.~ [I;=,; Exponential(1)I {uk > Iﬁkl}

4- Sampling t~!: this can be done by drawing samples from inverse Gaussian 7~ !\.~

2
p . 1 S -2
k=1 Inverse — Gaussian <5, ’ﬁ_i' {k>.

5- Sampling ¢: this can be done by drawing samples from gamma distribution {\ .~
1
P_, Gamma <2, (Iﬁkl + u_k)>
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6- Sampling S: this can be done by drawing samples from truncated multivariate normal
distribution:

I n— —1\— I n— I n— —1\— 1
Np((X'07X + T™)7X 07 (y — 0v), (X' X + T~ ™) [T, 1{16] >u—k}.

7- Sampling o: this can be done by drawing samples from inverse gamma distribution

Iy —xB - evyV-iey— X —9)
5 b3 = XB —6v)'V ™Ay~ X ~ 6v)

8- Sampling A: this can be done by drawing samples from gamma distribution

Gamm a (c +2p,d+ XV, Flkl)

Inverse — Gamma (a +

Simulation Study Analysis

simulation studies and real data analysis have conducted to illustrate the performance of the
proposed approaches (Bayesian reciprocal adaptive Lasso quantile regression using scale mixture
of uniforms referred to as 'BrALqr.U' and Bayesian reciprocal adaptive Lasso quantile regression
using scale mixture of normals referred to as 'BrALqr.N'"). The proposed approaches are compared
with some existing Bayesian (Alhamzawi et al. (2011), Alhamzawi and Ali (2018), Alhamzawi
and Ali (2020) and Alhamzawi (2021) ) and non-Bayesian approaches. The approaches in this
comparison include:

e Bayesian reciprocal adaptive Lasso quantile regression using scale mixture of uniforms
(BrALqgr.U).

e Bayesian reciprocal adaptive Lasso quantile regression using scale mixture of uniforms
(BrALqgr.N).

e Bayesian reciprocal Lasso quantile regression using scale mixture of uniforms (BrLqr.N).

e Bayesian Lasso quantile regression (BLqr).

e Bayesian bridge quantile regression (BBqr).

e Lasso regression (lasso).

¢ (Quantile regression (qr).

¢ Quantile regression with L1 penalty (qrL1).

We consider two simulation studies:
e Simulation study 1 (very sparse case): f = (4,0,0,0,0,0,0,0,0,0).
e Simulation study 2 (inconsistent regardless of the sample size (Zou, 2006): [ =
(5.6,5.6,5.6,0).

The data in the simulation examples were generated by
yi=X{f+e,i=12..,n
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We setup the error distribution e; so that the g-th quantile equal to 0. Following Li, et. al
(2010), we consider four error distributions:

e N(u,9), we setup u so that the qth quantile equal to zero.

e 0.1IN(u,1)+09N(u5),, wesetup u so that the qth quantile equal to zero.

e Laplace distribution, Laplace (u; b = 3), we setup u so that the qth quantile equal to zero.

e Mixture of two Laplace distribution, 0.1 Laplace (#; b= 1) + 0:9 Laplace (u; b =V5), we
setup u so that the gth quantile equal to zero. (Li et al. ,2010).
For the first three simulations (Simulation study 1, Simulation study 4), the rows of the design
matrix X were generated from N (0, ),) ,where ), has an autoregressive correlated matrix, where
Y =05 forall1 < i < j < p. The data for Simulation 4 is following the setup of Zou
(2006), where the cor(xl-,x]-) =—0.39 fori<j<4and cor(xy,x,) =0.23,i<4.In each
simulation study, we run 100 replications. For each replication, we simulate 20 observations as a
training set and 200 observations as a testing set. We run the Bayesian algorithms for 13000
iterations discarding the first 1000 iteration as a burn-in. Approaches are compared using median
of mean absolute deviation (MMAD):
MMAE = Median (mean |x] ppredicted _ T ptrue |

where me is the median which is taken over 100 simulations. The results of the simulations are
listed in Tables 1, and 2. We can see that our proposed approaches (BrALqr.U and BrALqr.N)
perform well compared with the other existing approaches. For all the simulated cases,
convergence of the corresponding MCMC Gibbs sampler was evaluated by trace plots and
histograms of the simulated samples. Trace plot is a convergence diagnoses technique, commonly
is using to indicate if the generated samples from MCMC for the posterior distribution of
parameters convergence to stationary distribution. Moreover, the histograms are used for checking
the distribution class of the interested variable.
Table 1: MMADs and SD for Simulation study 1. In the parentheses are standard deviations of the
MMADs.
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Method

Error Distribution

normal

normal mixture

Laplace

Laplace mixture

q=0.1

q=09

BrALqr.U
BrALqr.N
BrLqr.N
BLqr
BBqr
lasso

qr

qrL1

BrALqr.U
BrALqr.N
BrLqr.N
BLqr
BBqr
lasso

qr

qrL1

BrALqr.U
BrALqr.N
BrLqr.N
BLqr
BBqr
lasso

qr

qrL1

2.1493 (0.1373)
2.5076 (0.2328)
2.2001 (0.2527)
1.2486 (0.3110)
2.3263 (0.3175)
1.6381 (0.2912)
2.5104 (0.2133)
2.1088 (0.4368)

0.2396)
0.3010)
0.2252)
0.2388)
0.2329)
0.2721)
0.2999)
0.2001)

— — — p— — p— — —

1182 (0.1700)
5 30 (0.2637)
964 (0.2389)
868 (0.3869)
323 3 (0.2265)
(0.2196)
(0.2649)
(0.2005)

1.6336 (0.1738)
1.5859 (0.1857)
1.6231 (0.1003)
0.9142 (0.0636)
1.5358 (0.1085)
1.1054 (0.1736)
1.5890 (0.2101)
2.1954 (0.3198)

1.0195 (0.1553)
1.7263 (0.2562)
1.5421 (0.1075)
1.0861 (0.1256)
1.5721 (0.2130)
1.0398 (0.1290)
1.7309 (0.2601)
1.0047 (0.1362)

1.3553 (0.1288)
1.3337 (0.1387)
1.2845 (0.1059)
0.6866 (0.0642)
1.1728 (0.1168)

0.6259 (0.1708)
1.3336 (0.1353)
1.8189 (0.2706)

2.4785 (0.1042)
2.1649 (0.2701)
2.4169 (0.2196)
1.4334 (0.2444)
2.3227 (0.1486)
1.4346 (0.2992)
2.1667 (0.2852)
3.2173 (0.3620)

1.0796 (0.2912)
2.2954 (0.3663)
2.3257 (0.2334)
1.1580 (0.2942)
2.1773 (0.3042)
1.9325 (0.2754)
2.2267 (0.3482)
1.2447 (0.2865)

1.0655 (0.2618)
1.1598 (0.3562)
2.5863 (0.1595)
1.1075 (0.1851)
2.3274 (0.2534)
1.5689 (0.3660)
2.5608 (0.3353)
2.8172 (0.4808)

9.3083 (0.1751)
2.0547 (0.2024)
1.9508 (0.2106)

1.2821 (0.1364)
2.1511 (0.2002)

1.2706 (0.2393)
2.0526 (0.1883)
1.7146 (0.1525)

1.5004 (0.1380)
1.4353 (0.1340)
1.3516 (0.0963)
1.0115 (0.0839)
1.5150 (0.0773)
1.5557 (0.2030)
1.4787 (0.1257)

0.9998 (0.2288)

1.0415 (0.243%)
1.1275 (0.2468)
1.8439 (0.1070)
1.0432 (0.1131)
1.7894 (0.1234)
1.0531 (0.1186)
1.9282 (0.2639)
9.6873 (0.4265)
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In Table 1, we can see that the proposed method BrALqr.U performs better than the other
approaches in 4 out 12 cases.
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Figure 1: Trace plots based on posterior samples for Simulation 1 when the error is normal and q

= 0.9 using BrALqr.U and BrALqr.N methods.

The above figure (1) shows that the trace plots explains no flat bits and that MCMC algorithm
suffer no slow mixing which indicates that the proposed methods have good mixing properties.
Figure (6) illustrated the distributions of the parameter estimates ; — 31 through the histograms
and it is clearly that the distribution of the parameters follows the normal distribution.
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Figure 2: Histograms based on posterior samples for Simulation 1 when the error is normal and q
= 0.9 using BrALqr.U and BrALqr.N methods.
Table 2: MMADs and SD for Simulation study 2. In the parentheses are standard deviations of the

MMAD:s.

3

Method

Error Distribution

normal

normal mixture

Laplace

Laplace mixture

q=0.1

BrALqr.U
BrALqr.N
BrLqr.N
BLqr
BBqr
lasso

qr

qrL

BrALqr.U
BrALqr.N
BrLqr.N
BLqr
BBqr
lasso

qr

qrL1

BrALqr.U
BrALqr.N
BrLqr.N
BLqr
BBqr
lasso

qr

qrL1

0.6088 (0.0444)
0.6182 (0.0444)
0.7526 (0.0840)

0.7146 (0.0851)  0.5067 (0.0449
0.4190 (0.0332
0.5817 (0.0470)  0.4309 (0.0236

(
(
(
(
0.7239 (0.0386)
(
0.6182 (0.0472)
1.9330 (0.0131)
0.6056 (0.0382)
0.6964 (0.0430)
0.7886 (0.0526)
0.6936 (0.0433)
0.7193 (0.0355)
0.6179 (0.0503)
0.6964 (0.0431)
1.9376 (0.0134)

0.6786 (0.0532)
0.6319 (0.0389)
0.6110 (0.0353)
0.6552 (0.0662)
0.6891 (0.0586)

0.5287 (0.0286)

0.6319 (0.0388)

1.9884 (0.0266)

0.4187 (0.0432
0.4459 (0.0306
0.5132 (0.0338

0.4459 (0.0309
1.9284 (0.0120

S ‘e e an” S Neny? w” i

0.3576 (0.0239)
0.3587 (0.0363)
0.3794 (0.0189)
0.3729 (0.0226)
0.4176 (0.0369)
0.3636 (0.0212)
0.3587 (0.0340)
1.9071 (0.0121)

0.4339 (0.0260)
0.4000 (0.0227)
0.4343 (0.0340)
0.4414 (0.0251)
0.4448 (0.0210
0.4262 (0.0396
0.4030 (0.0233
1.9290 (0.0293

S

0.6245 (0.0762)
0.6688 (0.0654)
0.6706 (0.0408)
0.7891 (0.0707)
0.6315 (0.0585)
0.7442 (0.0612)
0.6688 (0.0653)
2.0724 (0.0631)

0.6530 (0.0484)
0.5711 (0.0266)
0.6277 (0.0575)
0.6945 (0.0405)
0.5856 (0.0719)
0.9203 (0.0920)
0.5717 (0.0265)
1.9353 (0.0211)

0.6525 (0.0663)
0.5402 (0.0379)
0.6988 (0.0410)
0.6508 (0.0615)
0.6806 (0.0467)
0.8162 (0.0709)
0.5418 (0.0397)
2.1408 (0.0550)

0.4%05 (0.0312)
0.4611 (0.0257)
0.5343 (0.0368)
0.5280 (0.0484)
0.5208 (0.0352)
0.5587 (0.0539)
0.4639 (0.0275)
2.0201 (0.0350)

0.3613
0.3110

(0.0220)
(0.0217)
0.3467 (0.0315)
0.3381 (0.0327)
0.3532 (0.0257)
0.5282 (0.0363)
0.3118 (0.0233)
1.9108 (0.0100)

0.4638 (0.0433)
0.3908 (0.0304)

0.4740 (0.0299)

0.5147 (0.0373)
0.4860 (0.0367)
0.5908 (0.0319)
0.3909 (0.0334)
2.0505 (0.0306)
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In Table 2, we can see that the proposed method BrALqr.N performs better than the other
approaches in 6 out 12 cases while the proposed method BrALqr.U performs better than the other
approaches in 4 out 12 cases.

Real Data Analysis

The data was obtained from Al-Kema medical laboratory, which is a laboratory licensed by the
Ministry of Health, located in Al-Diwaniyah Governorate. The phenomenon under study is a
medical phenomenon in which the dependent variable was (y) and 17 explanatory variables as
shown in the table below. The sample size under study was (114) single and after data collection
it was dealt with in a standard format to ensure data purification because the units of measurement
for the variables are different. We randomly divide the data into a training set with 30 observations
and a testing set with 83 observations. Model fitting is carried out on the training set observations
and performance is calculated with the mean square error on the testing set, table (3) shows the
results which indicates that the proposed method perform better than the other approaches.

Vangblfe S Abbreviation | Symbol
description
Seram cholesterol | s. cholesterol Y
Random Blood R.B.Sugar X1
sugar
Blood urea B.Urea X2
serum creatinine | S.creatinine X3
loyv density LDL x4
Lipoproten
ngh densite HDL X5
Lipoproten
Calcium Cat++ X6
High ceeL Test HCT X7
Heamglobin Hb X8
Packt cell valume PCV X9
Weate Blood cell WBC X10
Earthrocet R eate E.S.R X11
Blood group | X12
PLTelate PLT X13
Procalci PCT X14
mean platelet MPV X15
volume
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Weight X16

Age X17

Table 3: The case study variables

Table 4: Prediction errors with their standard deviations for the real data (The bold numbers
correspond to the smallest MSE in each category.)

g=0.1 q=0.5 qg=10.9

MSE (SD) MSE (SD) MSE (SD)

BrALqr.U 5007.795 (70.262) 5173.842 (69.184) 6062.434 (118.374)
BrALqr.N 5836.318 (67.070) 5084.959 (69.102) 6562.338 (125.629)
BrLqr.N 7931.895 (77.131) 7931.895 (77.131) 32383.217 (128.248)

BLqr 5144.131 (70.424) 5518.731 (71.831) 16829.566 (127.068)

BBqr 7931.852 (77.131) 6123.069 (79.322) 6123.069 (79.322)

lasso 7059.217 (67.662) 7059.217 (67.662) 7059.217 (67.662)

qr 7931.843 (77.131) 6123.071 (79.322) 32383.235 (128.248)

qrLl  10412.950 (68.652) 7537.549 (76.977)  12799.023 (115.022)
Conclusions

The violation of the least squares methods motivates the researchers to search about more valuable
parameters estimation methods, the regularization methods that employed the penalized function
have been widely popular method in regression analysis, such as lasso, adaptive lasso, elastic
net,...etc. The reciprocal adaptive lasso is another regularization method. New hierarchical prior
models have introduced with the scale mixture is of normls and the scale mixture of uniforms.
Based on the hierarchical prior models the posterior densities have developed, also Gibbs sampler
algorithm have implemented for the necessary computations. A comparison between the two
proposed models have conducted and to assess the quality of the coefficients estimates through
simulation scenarios and real data analysis. The criterion that is named median mean absolute
deviation and its standard deviation has used to assess the quality of the parameter estimation
methods in simulation results, but the mean square error and its standard error criterion has used
to assess the quality of the parameter estimates in real data analysis. Results in both of the
simulation scenarios and real data analysis show that the proposed methods are comparable to the
other methods.
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