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1. Abstract 
An early prediction and detection of nutrient deficiency empower farmers to appropriately 
categorise and apply essential nutrient supplements on time. This work presents a novel 
methodology built on Transfer Learning (TL) with a Convolutional Neural Network (CNN) to 
offer enhanced accuracy in the early detection of nutrient deficiency using leaf patterns and colour 
through an Enhanced Channel Boosted - Convolutional Neural Network (CB-CNN). Leaf features 
are extracted using Oriented FAST and Rotated BRIEF (ORB) before processing by the proposed 
CB-CNN. The present work precisely forecasts the type of nutrient deficiency from the leaf 
images, leaf pattern and leaf shape. It is observed that experimental results show 99.37% prediction 
accuracy over conventional neural network models. Additionally, there is considerable 
improvement in other performance metrics, viz., precision, specificity, sensitivity and F-score. The 
proposed methodology beats its existing counterparts by magnitudes ranging from 1.17% to 
10.27%. It is thus clinched that the proposed model outperforms existing neural network models 
with the highest precision and accuracy. 
2. Keywords: Plant Nutrient Deficiency; Leaf Image analysis; Bilateral filter; Channel Boosted-
Convolutional Neural Network (CB-CNN); Oriented FAST and Rotated BRIEF (ORB); Transfer 
Learning (TL) 
 
3. Introduction 
Planet Earth’s biodiversity is the predominant phenomenon in serving the global population to 
fulfil their agricultural and farming needs, forming the planet's most imperative nutrition source. 
Over centuries, nearly 7000 plant species have been found to exist on Earth. Generally, plant 
constituents such as seeds, flowers, leaves, bark and roots provide people with rich minerals and 
other nutrition compounds. Leaves feed the whole plant by absorbing sunlight, undergoing 
photosynthesis, producing carbohydrates and, in turn, supplying minerals and proteins. As leaves 
are the plant feeders, retardations in their growth induce adverse effects on plant growth and yield 
quantity and quality. Extensive knowledge in understanding the leaf patterns by looking for flaws 
in their appearance, structure, and other external features shall furnish information on healthy 
plants. Disease-infected leaves contribute growth retarded plants; thereby, the overall yield gets 
reduced. This ends up with insufficient food production cum supply causing turbulence in the net 
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income expectations of the farmers. The nutrient deficiency of a plant can be identified well in 
advance by closely observing the leaf images and patterns. This non-destructive method of image 
processing offers a promising methodology for the masses. Noise in an image can be reduced using 
a bilateral filter by integrating the spatial and range kernels, which are used to measure the 
respective spatial distance and intensity connected with the pixels, as explained (Zhang et al., 
2014). It is described (Langampol et al. 2019) without any knowledge of the type and strength of 
the signal, a Smart Switching bilateral filter (SSBF) removes noise from noisy images efficiently. 
The inception of ResNet-v2 network architecture with transfer learning and fine-tuning processes 
achieves the best accuracy in detecting macronutrient deficiency of plants. The model is 
implemented using the okra plant image data set (Wulandhari et al. 2019). 
 
It is found that Oriented Fast and Rotated Brief (ORB) is based on a withdrawal technique with a 
FAST keypoint detector. A revised version of the visual sensor (Vinay et al. 2018) focuses on 
providing a quick and efficient local feature detector. Kernel PCA (KPCA) is another 
dimensionality reduction technique covering linear uncorrelated PCA components, such as 
Occlusion. The published article (Partel et al. 2019) described many advanced methods, such as 
electrical impedance spectroscopy, reflectance spectroscopy, Fourier-transform infrared 
microspectroscopy and chlorophyll fluorescence spectroscopy, to gather information for deep 
learning. It is narrated (Azimi et al. 2021) that Nitrogen deficiency in plants reduces nutrition 
levels and minimizes agricultural yield. An automatic, plant-shot image-based phenotyping 
approach is utilized for the classification of stress stages in plants. The nitrogen concentration level 
in plants is vital for plant uptake and optimum agricultural yield. As described by (Elvanidi et al. 
2018), three different Nitrogen concentration levels are activated in plants in a controlled 
greenhouse chamber, revealing the growth in crop reflection caused by nitrogen deficiency. 
 
The reflectance spectroscopy could even detect stress manifestation and pinpointing, which can be 
used to produce better results, as explained (Rustioni et al. 2018). The article (Nair P et al. 2017) 
implemented a bilateral filter directly, which was found to be expensive. By approximating the 
Gaussian range kernel, a rapid and perfect approximation of the bilateral filter can be obtained 
using polynomials and trigonometric functions. An easy transfer learning perspective is proposed 
(Condori et al. 2017) using pre-trained CNN models, and those results are collated with the existing 
techniques in recognizing nitrogen deficiency in maize leaf images. Another method of analyzing 
the leaf surfaces alone is used for categorizing the presence of nutritional colour patterns present 
in oil palm leaves is explained (Hairuddin et al. 2011). With the help of the image shadow effect 
to identify the nitrogen deficiency hinge on a crop, a multi-spectral sensor was evolved to recognise 
the corn reflectance details from G, R, and NIR light spectra (Noh et al. 2012) established in corn 
plants using the shadow image. A real-time nitrogen deficiency analysis is explained (Kusumo et 
al. 2018) using machine learning methods like support vector machines, Decision Trees, Random 
Forests, and Naive Bayes to detect RGB colour information. In the automatic detection of corn 
diseases, local features on images being Scale-Invariant Feature Transform (SIFT), Speeded Up 
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Robust Features (SURF), Oriented FAST and Rotated BRIEF (ORB), and Histogram of Oriented 
Gradients (HOG) were evaluated. 
 
In the early stage of corn development, an Artificial Vision System (AVS) is used to recognize the 
levels of nitrogen deficiency. Experimental results were obtained (Romualdo et al., 2014). This 
indicates that the margin of index leaves produced 82.5% Global Percentage of Right (GPR) at the 
V4 stage and in the bottom of old leaves 87.5% at the V7 stage in detecting nitrogen deficiency 
symptoms. Further, image processing approaches for RGB colour feature extraction, real-time 
texture, and edge detection are used with supervised machine learning to detect and identify plant 
nutrient deficiency (Shah et al., 2018). The hyperspectral imaging and digital image processing 
analysis are the popular approaches for diagnosing non-destructive nutrition in plants (Sun Y et al. 
2018); these techniques are used to analyze the temporal dynamics of leaf morphology and colour. 
It also finds effectual in dynamic indices and optimal leaf position for recognition. Bilateral 
filtering is narrated (Tomasi et al. 1998) to impart smoothness to a given image while preserving 
its edges with the help of a nonlinear combination of neighbouring image values. The enforcement 
of photometric distance in the range component of the bilateral filter makes appropriate colour 
image processing. 
 
This research aims to bring some novel image-processing techniques to detect nutrient deficiency 
by analyzing the features of leaf physiology. In digital farming, the classification of different 
nutrient deficiencies is a challenging task. Long-range images captured using crewless aerial 
vehicles (UAV), aeroplanes and satellites have been utilised to diagnose plant leaf discolouration 
and pattern development with the help of various techniques such as laboratory leaf analyzes and 
chlorophyll meters (SPAD). However, accurate and sustainable results were not possible with 
these discrete techniques. Mineral deficiencies of iron, magnesium, nitrogen and potassium in 
plants are considered to be the prime factor of stress in plants, which in turn causes a reduction in 
yield. The proposed effective technique of exploiting the pre-trained deep neural networks for 
channel-boosted convolution neural networks using oriented FAST and rotated BRIEF proves to 
outperform other techniques regarding accuracy and efficiency in feature extraction. 
 
The organization of this paper is Section -II, which discusses some of the existing low-performing 
methodologies for identifying nutrient deficiency in a plant from leaf images. Section III details 
the proposed image analysis methodology using filters and an Oriented FAST and Rotated BRIEF 
(ORB) algorithm, improved Binary Robust Independent Elementary Feature – BRIEF 
implantation and Convolution Neural Network integration. Section – IV discusses the novel 
method of nutrient deficiency detection and analysis. The performance evaluation for the proposed 
system is detailed, along with various comparison charts. Conclusions are presented in section V. 
 
4. Existing Methods 
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In the reference article (Xu. Z et al. 2020) (DCNN-IDNDR), different steps have been carried out 
to find the symptoms of nutrient deficiencies in the leaf of rice plant. Deep Convolutional Neural 
Network (DCNN) is the technique cast-off in image classification. Different DCNN techniques 
have been used to diagnose rice nutrient deficiencies and analyze the accuracy levels. Many images 
were collected using hydroponic experiments depicting nearly ten classes of nutrient deficiencies 
in plants. Four DCNN concepts, namely ResNet50, Inception-v3, NasNet-Large and 
DenseNet121, were used to diagnose various plant deficiencies, and the accuracies showed 90% 
and above, which outperforms colour feature and HOG of SVM. DenseNet121 proved with 
98.62% and 97.44%. For the validation and test accuracies, respectively. 
 
Two popular machine learning models are used (Tran et al. 2019) (CSDNN-FCMDT). 
Autoencoder and Inception-ResNet V2 are the models elaborated to forecast deficiencies and to 
classify results in 3 macronutrients, including Nitrogen, Potassium and Calcium in tomato plants. 
The inception module uses various hyper-parameters with various scales to identify patterns. A 
residual network for training the dataset was created using the Rectified Linear Unit (ReLU) 
activation function and Batch Normalization (BN). Batch normalization solves the vanishing 
gradients problem. Based on the applied images, the encoder generates internal representation and 
converts the rendered drawings into outputs using the pre-trained dataset decoder. The 
combination of Inception-ResNetV2 with auto-encoder increases the prediction accuracy of 
decease identification. 
 
A new deep-learning architecture (Khatoon et al. 21) was used to classify instantly the nutritional 
disorders and the damages caused by pets and pathogens and their symptoms in tomato plants. A 
Deep Neural Network trained the proposed model. A deep CNN of different depths was introduced 
with the dataset of four macro-nutrient deficiencies: Potassium, Nitrogen, Calcium, and 
Magnesium. Other disease classes and nutritional disorders were compared using deep learning 
architecture like VGGNet-16, DenseNet and ResNet and prediction accuracy was calculated and 
compared. 
 
The leaf images were divided into minor blocks in the article (Watchareeruetai et al. 2018) 
(IDPND-CNN). Each block of leaf pixels was applied to a set of CNNs that responded if an 
identified block had nutrient deficiency symptoms. A multi-layer perception network integrates all 
the responses from every block into one to produce final results for detecting nutrient deficiency. 
5. Proposed Methods 
 The deep learning-based proposed method uses a Bilateral filter in the first stage to eliminate the 
redundant content in input images. 
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Figure 1: Proposed model of enhanced ORB-CBCNN. 
 
Then, ORB is used to extract the key features from filtered images. In the last step, CR-CNN is 
used to classify the output more accurately. The process flow of the proposed method is shown in 
Figure 1.  
 
5.1. Smoothening filter 
The noise-reducing smoothening filter called the Bilateral Non-linear filter, which preserves edge 
information from input leaf images, is used in this work. A weighted average value from 
neighbouring pixels replaces all the intensity values of pixels. Gaussian distribution is used in 
finding the weighted average of images. The calculated weights are based not only on pixels’ 
Euclidean distance but also applied to the range differences such as instance colour intensity, depth 
distance, etc. Thus, in the enhanced method, the sharp edges are preserved by properly looping all 
pixels through weight adjustments. 
 
A bilateral filter defined by Tomasi et al. (1998) [17] and Banterle et al. (2012) [22] is given by 

𝐼  (𝑑) = ∑ 𝐼(𝑑 )𝑔 (‖𝐼(𝑑) − 𝐼(𝑑)‖)𝑔 (‖𝑑 − 𝑑‖)∈∅    (1) 

 
Normalization factor Np is given by, 
𝑁 = ∑ 𝑔 (‖𝐼(𝑑 ) − 𝐼(𝑑)‖)𝑔 (‖𝑑 − 𝑑‖)∈∅      (2) 

Where,  
 𝐼 → 𝑂𝑢𝑡𝑝𝑢𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑖𝑙𝑡𝑒𝑟 − 𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 𝑖𝑚𝑎𝑔𝑒 
𝑑 → 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑝𝑖𝑥𝑒𝑙 
 ∅ → 𝑤𝑖𝑛𝑑𝑜𝑤 𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑 𝑖𝑛 𝑑 𝑠𝑜 𝑑 ∈ ∅ 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑒𝑥𝑡 𝑝𝑖𝑥𝑒𝑙    
 𝑔 →  𝑘𝑒𝑟𝑛𝑒𝑙 𝑟𝑎𝑛𝑔𝑒 𝑓𝑜𝑟 𝑠𝑚𝑜𝑜𝑡ℎ𝑖𝑛𝑔 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠 
 𝑔 → 𝑘𝑒𝑟𝑛𝑒𝑙 𝑠𝑝𝑎𝑡𝑖𝑎𝑙 𝑓𝑜𝑟 𝑠𝑚𝑜𝑜𝑡ℎ𝑖𝑛𝑖𝑛𝑔 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠 
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The weight 𝑁  is calculated by spatial closeness(g ) and intensity differences (g ) 
 
In an image, consider a pixel at (𝑥, 𝑦), which is to be denoised using its nearby pixels and assume 
a pixel at (𝑖, 𝑗) 𝑎s its neighbouring pixel. Then, assume a Gaussian kernel as range and spatial 
kernel, to remove the noise in the pixel (𝑥, 𝑦) , the assigned weight at (𝑖, 𝑗) is  
the weight assigned for pixel (𝑖, 𝑗) is given by 

𝑤(𝑥, 𝑦, 𝑖, 𝑗) = exp (−
( ) ( )

−
‖ ( , ) ( , )‖

)    (3)  

 𝜎  𝑎𝑛𝑑 𝜎 →   

 𝐼(𝑥, 𝑦)𝑎𝑛𝑑 𝐼(𝑖, 𝑗)𝑎𝑟𝑒 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑝𝑖𝑥𝑒𝑙𝑠 𝑜𝑓 
 (𝑥, 𝑦)𝑎𝑛𝑑 (𝑖, 𝑗)𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦 
 
Normalize them after calculating the weights  

𝐼 (𝑥, 𝑦) =
∑ ( , ) ( , , , ),

∑ ( , , , ),
 (4)  

 𝐼 → 𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙(𝑥, 𝑦) 
 
5.2. Oriented FAST and Rotated BRIEF (ORB) algorithm 

 
Figure 2: Flow diagram of ORB algorithm. 
 
The flow diagram of the ORB algorithm, an alternative to the SIFT (Scale-Invariant Feature 
Transform) and SURF (Speeded-Up Robust Features) methods, is shown in Figure 2. It improves 
efficiency of the system. The method ORB will perform best with the help of the FAST key point 
detector and the BRIEF descriptor.  
The essential features of ORB are  

i. The summation of fast and correct orientation items to FAST 
ii. The oriented BRIEF attributes computation is efficient. 

iii. It will investigate the correlation and variance of oriented BRIEF features. 
iv. A data-acquiring method for decorrelating BRIEF features will give the finer presentation 

in the nearest neighbour applications. 
 
5.3. Features extraction using Accelerated and Segments Tests (FAST) 
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A single image is represented as a multiscale image pyramid, which is arranged as a sequence with 
different resolutions (downsampled). The key point of the image is detected with the help of a 
pyramid. Once the key point is detected then, ORB assigns the orientation of the key points based 
on the level of intensity. Figure 3 shows the Multiscale image pyramid method used in the ORB 
algorithm. 
 
Considering a pixel p in an array of images, the FAST algorithm compares the brightness of the 
16 pixels, which are in a small circle around the pixel p. The pixels in the small circle are again 
sorted into three types: lighter than p, darker than p or similar to pixel p. The critical point is 
selected based on the pixels in the circle when above eight pixels are brighter or darker than p. 

 
Figure 3: Multiscale Image Pyramid. 
ORB measures corner orientation  
The ORB descriptor- Patch’s definition is given below 
 𝑧 ∑ ( , )  (5) 

 After calculating the above instance the patch’s centroid, the “center of mass” is given by 

C=    (6)  

The corner’s center O implements a new improved vector to the centroid - OC. Hence, the 
closeness subscript direction of the patch is specified by:  

 
Figure 4: Angle (θ) calculation. 
 
The angle calculation is illustrated in Figure 4. 
𝜃 = 𝑎 tan 2 (𝑍 𝑍 )  (7) 
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Once the orientation of the patch is identified, then the patch can be rotated like canonical rotation. 
So, the descriptor value can be calculated, which is obtained with some invariance in rotation.  
 
3.4 Binary Robust Independent Elementary Feature – BRIEF 
Here, BRIEF and FAST are used to represent the object together. The output of the FAST 
algorithm is given to the BRIEF. The FAST algorithm helps to find all the key points. BRIEF will 
convert the Binary Feature Vectors (BFV) of all critical points. BFV, also called Binary Feature 
Descriptor (BFD), contains only 1 and 0. Therefore, every key point is introduced by a feature 
vector of 128-512 bits string. ORB adds this feature without reducing the speed factor of BRIEF.  
 
Let P be the patch of the smoothed image. A binary test τ(P; a, b) is now defined as 

τ(P;a,b) = 
 1, 𝑃(𝑎) < 𝑃(𝑦)

0, 𝑃(𝑎) ≥ 𝑃(𝑏)
  (8)  

P(a) is the intensity value at pixel a   
where P(a) represents intensity of P at the point a. Now, the vector of n binary tests, F(n), is 
described as 

F(n) = ∑ 2 𝜏 (P;  𝑎 𝑏 , 𝑏)   (9) 
The complementing performance of BRIEF reduces abruptly for in-plane rotation of angles more 
than a few degrees. ORB proposes a technique to guide BRIEF as stated by the orientation of the 
key points. For n binary tests with any attribute set at location (xi, yi), a 2 x n matrix can be written 
as 

S=
𝑎1 … … . 𝑎
𝑏1 … … . 𝑏

     (10) 

It utilizes the orientation θ of a patch P and Rθ, the correlated rotation matrix, and set up a guided 
part Sθ of S:  
𝑆 = 𝑅      (11) 
Hence, the guided BRIEF operator can be given by 
𝑔  (𝑝, 𝜃) = 𝑓 (p)| (𝑎 𝑏  ) ∈ 𝑆    (12)  
 
Then the angle is sampled to change into discrete format with an interval of 2π/30 (12 degrees), 
and a lookup table is created with pre-calculated BRIEF features. The guided points Sθ will 
calculate the descriptor until the key point θ is orientated and viewed consistently. 
 
5.5. Enhanced Channel Boosted-Convolutional Neural Networks 
Here the output of the ORB is given to the newly developed Auxiliary Learner, which consists of 
the Auto Encoder, and to the other side to reduce the dimensionality. The advantage of the 
architecture is managing the different information of the image at various spatial resolutions. The 
sparsity in the network is introduced to reduce the computational cost because of parallel 
processing. The working procedure of CB-CNN is shown in Figure 5. Finally, the proposed 
methodology accurately predicts the nutrient deficiency of the plant, and it displays the Nitrogen 
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level of the corresponding leaf. Four main plant leaves (salad cucumber, tomato, corn, and rice) 
are trained and used for nutrient deficiency prediction.  

  
 

 
Figure 5a, 5b: Enhanced CB-CNN working flow diagram. 
The following novel methodologies are designed and implemented in this work: 
 To improve the representational capacity of the Convolutional Neural Networks, a new 

Channel Boosted method is introduced. 
 The Channel Boosting method is incorporated with CNN and can apply complex 

classification problems by predicting even minor differences between the images. 
 The proposed method works with both transfer learning and input images. 
 The representation of input images is boosted by generating various images obtained 

through transfer learning and deep generative learners. 
 

6. Results and Discussion 
The output images of Rice leaf are shown in Figure 6 after every stage of the proposed method. 
Figures 6, 7, 8 and 9 show Rice, Apple and Blueberry leaves with their nitrogen levels. Generally, 
if the nitrogen level is high, then the leaf and the whole plant are considered to be healthy; if the 
nitrogen value is reduced, the deficiency can be identified based on the leaf discolouration. The 
leaf becomes pale green due to nitrogen deficiency. 
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Figure 6: Rice_Bacteral leaf blight with nitrogen level of 0.554156. 

 
Figure 7: Rice_ leaf smut with a nitrogen level of 1.784738. 
 

 
Figure 8: Apple_Scab with the nitrogen level of 1.61689. 
 

 
Figure 9: Buleberry_Healthy leaf with nitrogen level of 2.353248. 
 
6.1. Accuracy (ACC) in percentage 
Accuracy is the ratio of the correct prediction to the total predictions. 

𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁
∗ 100 
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Figure 10: Accuracy comparison chart. 
 
Table 1 and Figure 10 depict that the proposed ORB-CBCNN methodology provides improved 
performance in accuracy than the DCCNN-IDNDR, CDCNN-FCMDT, IADTDL and IDPND-
CNN with the percentage difference of 4.62%, 1.19%, 2.46% and 10.17% respectively. 
Table 1: Accuracy in percentage. 

 
6.2. Precision (PREC)  
The sensitivity percentage is calculated based on the number of correct optimistic predictions 
divided by the sum of positive predictions. 
 

𝑆𝑁 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 (𝑇𝑃)

𝑇𝑃 + 𝐹𝑃
∗ 100 

 

Data 
Chunk 

CSDNN- 
IDNDR 

CSDNN- 
FCMDT 

LADTDL IDPND- 
CNN 

ENHANCED ORB-
CBCNN 

1 94.490005 98.160004 96.169998 89.93 99.684998 
2 94.395004 98.445 95.150002 89.945 99.375 
3 95.229996 98.184998 96.645004 90.004997 99.544998 
4 95.725006 99.145004 97.57 89.5 99.25 
5 94.405006 98.224998 97.040001 89.860001 99.220001 
6 94.375 98.104996 97.334999  89.815002 99.095001 
7 96.635002 98.065002 96.809998 89.395004 99.324997 
8 94.599998 98.320007 96.220001 90.190002 99.18 
9 95.144997 98.269997 97.055 89.43 99.43 
10 94.870003 98.060005 97.584999 89.519997 99.630005 
Average 94.887001

7 
98.198001

 
96.958000
2 

89.759000
3 

99.3735 
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Table 2 and Figure 11 indicates that the proposed ORB-CBCNN methodology provides improved 
performance in precision than the DCCNN-IDNDR, CDCNN-FCMDT, IADTDL and IDPND-
CNN with the percentage difference of 4.62%, 1.19%, 2.46% and 10.17% respectively. 
 
Table 2: Resulted Precision in the percentage. 
 

 
Figure 11: Precision for different methods. 

Data 
Chunk 

CSDNN- 
IDNDR 

CSDNN- 
FCMDT 

LADTD
L 

IDPND- 
CNN 

ENHANCED ORB-
CBCNN 

1 94.857834 98.208206 95.46080
8 

90.538071 99.759644 

2 94.047028 98.459534 97.11231
2 

89.877213 99.360191 

3 95.475563 98.267052 95.37009
4 

90.242432 99.431305 

4 95.922470 98.159447 96.65554
8 

89.202065 99.102692 

5 94.311943 98.316803 96.28099
1 

90.409569 99.318634 

6 94.229042 98.148331 96.36595
2 

90.392616 99.070465 

7 95.612190 98.079422 96.11822
5 

89.335999 99.094254 

8 94.986885 98.233185 95.39382
9 

90.694611 99.248947 

9 95.086388 98.327995 97.09738
2 

89.210419 99.748390 

10 94.549248 98.079231 96.60170
0 

89.814629 99.600235 

Averag
e 

94.907859
1 

98.227920
 

96.24568
4 

89.971762
4 

99.3734757 



 

147 
 

Ann. For. Res. 67(1): 135-151, 2024 
ISSN: 18448135, 20652445 

ANNALS OF FOREST RESEARCH 
www.e-afr.org 

 

© ICAS February 2024 

 
6.3. Sensitivity (SN)  
The percentage of sensitivity is calculated based on the number of correct optimistic predictions 
divided by the total accurate prediction 

𝑆𝑁 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 (𝑇𝑃)

𝑇𝑃 + 𝐹𝑁
∗ 100 

 

 
Figure 12: Precision for different methods 
 
Table 3 and Figure 12 expose that the proposed ORB-CBCNN methodology provides improved 
performance in sensitivity than the DCCNN-IDNDR, CDCNN-FCMDT, IADTDL and IDPND-
CNN with the percentage difference of 4.62%, 1.19%, 2.46% and 10.17% respectively. 
 
Table 3: Sensitivity is calculated in percentage. 

Data 
Chunk 

CSDNN- CSDNN- 
LADTDL 

IDPND- ENHANCED 
ORB-

CBCNN 
IDNDR FCMDT CNN 

1 94.08 98.11 96.95 89.18 99.61 

2 94.79 98.43 97.19 90.03 99.39 

3 94.96 98.1 98.05 89.71 99.66 

4 95.51 98.13 98.55 89.88 99.4 

5 94.51 98.13 97.86 89.18 99.12 

6 94.54 98.06 98.38 89.1 99.12 

7 95.66 98.05 97.56 89.47 ,99.559998 

8 ,94.169998 98.41 97.13 89.57 99.11 

9 95.21 98.21 97.01 89.71 99.11 

10 95.23 98.04 98.64 89.15 99.66 

Average 94.866 98.167 97.732 89.4798 99.374 
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6.4. F-Score 
F-Score represents the harmonic mean of precision and sensitivity. It is measured as mentioned 
below: 

𝐹 − 𝑆𝑐𝑜𝑟𝑒 =
2 ∗ 𝑃𝑅𝐸𝐶 ∗ 𝑆𝑁

𝑃𝑅𝐸𝐶 + 𝑆𝑁
 

Table 4 and Figure 13 show that the proposed ORB-CBCNN methodology provides improved 
performance in F-Score than the DCCNN-IDNDR, CDCNN-FCMDT, IADTDL and IDPND-
CNN with the percentage difference of 4.62%, 1.19, %, 2.46% and 10.17% respectively. 
Table 4: Calculated F-Score. 

Data 
Chunk 

CSDNN- 
IDNDR 

CSDNN- 
FCMDT 

LADTD
L 

IDPND- 
CNN 

ENHANCED ORB-
CBCNN 

1 94.467323 98.159081 96.19963
8 

89.853897 99.684769 

2 94.417046 98.444771 97.15114
6 

89.953545 99.375092 

3 95.217087 98.183456 96.69148
3 

89.975433 99.545525 

4 95.715797 98.144722 97.59358
2 

89.539749 99.251129 

5 94.410866 98.223305 97.06407
2 

89.790581 99.219215 

6 94.384270 98.104141 97.36256
4 

89.741653 99.095238 

7 95.636101 98.064713 96.83374
8 

89.402954 99.326576 

8 94.576675 98.321510 96.25408
2 

90.128792 99.179428 

9 95.148155 98.268959 97.05366
5 

89.459511 99.428169 

10 94.888397 98.059608 97.61021
4 

89.481079 99.630112 

Averag
e 

94.886171
7 

98.197426
6 

96.98141
9 

89.732719
4 

99.3735253 
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Figure 13: F-Score for different methods. 
 
7. Conclusions 
Here a novel hybrid variant with an Enhanced Convolutional Neural Network is introduced along 
with ORB-CBCNN to increase the prediction accuracy of plant leaf classifiers. At first, all noises 
from the input plant dataset are removed using a bilateral filter. Next, the filtered dataset is driven 
through the proposed Oriented FAST and Rotated BRIEF (ORB) algorithm for leaf feature 
extraction. Finally, the extracted features are carried across the enhanced CB-CNN classifier that 
classifies leaf quality into normal, healthy or nutrient deficient. Here, the proposed model is 
efficiently designed and implemented to classify nutrient-deficient plants using leaf color and 
pattern. The enhanced ORB-CBCNN model performance is evaluated by incorporating a plant 
village dataset of metrics viz., Accuracy, Precision, Specificity, Sensitivity, and F-Score. The 
introduced model employed transfer learning (TL) and CNN together to deliver impressive 
performance in the case of any plant leaf. The proposed ORB-CBCNN-based methodology 
outperformed its counterparts with a percentage difference of 4.62%, 1.19%, 2.46% and 10.17%, 
respectively, regarding all CNN metrics. 
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